Canadian Pathology Quality Assurance

Cancer Diagnostics - Keeping Targeted Therapy on Target

CPQA - KEEPING TARGETED THERAPY ON TARGET

CPQA provides an external quality assurance (EQA) program within Canada and globally:

- Distributes clinically validated samples
- Participating labs monitor and improve the quality of their Immunohistochemistry (IHC) and molecular testing.

DIAGNOSTIC ANATOMIC PATHOLOGY IS A COMPLEX, MULTIFACTORAL PROCESS

STANDARD HISTOLOGY

CPQA Is A TMA Based EQA Program (mostly)

CPQA Fundamentals

Lab/								웅						
		U							u					N
22														
								P P	P P	P	P		P	
									N		U			
										U U	U			
					N N	E		N	N					
						N								
			P P	P	P P	P		P	P					
12														
13			E P											
14									N N					
15														
		U						U U						
18														
19		U	U U		U U			U	U U	U U				
20														
21														
				N		N			N					
23					N N	N			N N					
24														
25		U						U U	U					
27					v	N			N N					
28			P	P	P	P P			P					
29									N N					

TMA Scorer - Web Based Data Entry Point

```
ER HER2 PR
```

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
1 row	P	U		P	P			U	P		P	
2 row	24	23	22	21	20	19	18	17	16	15	14	13
3 row	25	26	27	28	29	30	31	32	33	34	35	36
4 row			46	45	44	43	42	41	40	39	38	37

1 row			
1	Pos ${ }^{6}$	$\mathrm{Neg}{ }^{\mathrm{C}}$	Unsat ${ }^{\text {c }}$
2	Pos ${ }^{\text {C }}$	Neg C	Unsat ${ }^{*}$
3	Pos ${ }^{\text {C }}$	$\mathrm{Neg}{ }^{\circ}$	Unsat ${ }^{\text {C }}$
4	Pos ${ }^{6}$	$\mathrm{Neg}{ }^{\text {C }}$	Unsat ${ }^{\text {c }}$

Slide Expert Assessment and Final Report

Assessment Team

A sampling of CPQA 2021 EQA challenges

- H\&E
- PD-L1
- Gastric HER2
- WT1
- CMV
- HSV
- p63/AMACR/keratin
- ER/PR/HER2 Breast
- MMR
- NTRK
- p53 endometrial
- p53 vulvar
- c-Myc lymphomas
- ROS1
- CD117
- BRAFV600E
- CD20
- p16
- ALK
- Ki67
- IDH1
- ATRX
- 1p19q FISH
- RET alterations

Breast Cancer ER / PR / HER2

We have completed 34 Breast Ca EQA Challenges $=1530$ slides $=61200$ cores

Breast Cancer biomarkers

2 out of 3 breast cancers are ER or PR positive. Their cells have hormone receptors which help cancer cells grow and spread.
Drugs: Tamoxyfen, Toremifene, Fulvestrant
1 in 5 breast cancers have too much of a growth-promoting protein known as HER2. HER2 positive cancers tend to be aggressive.
Drugs: Herceptin and others drugs

ESTROGEN RECEPTORS Run 4 cIQc

ESTROGEN RECEPTORS

Run4/ Core 10 \& 42

PROGESTERONE RECEPTORS
 Run 4

Progesterone Receptor

cIQc RUN 4/ core 3

HER2
clQc Run4

HER2

cIQc RUN 4/CORE 27

KEEPING TARGETED THERAPY ON TARGET

LABORTORY DEVELOPED TESTS (LDTs)

A LDT is a type diagnostic test that is designed, manufactured and used within a single laboratory.

- LDTs are diagnostic and prognostic
- Tests must be accurate so patients:
- Do not receive unnecessary treatments
- Treatment is not delayed
- Are not exposed to inappropriate therapies.

CPQA is Protocol Agnostic - the majority of tests we review are LDTs

COMPANION DIAGNOSTICS (CDx)

CDx - A term used by the FDA

- A companion diagnostic is defined in relation to a specific therapy
- identifies patients who are most likely to benefit from the therapy
- identifies patients at increased risk of serious side effects
- monitors response to treatment
- FDA have 46 Companion Diagnostic Tests with 107 Drug Therapies dependent on the tests
- If the diagnostic test is inaccurate, then the treatment decision based on that test may not be optimal.

HER2 - CDx Immunohistochemistry Tests

- INFORM HER-2/neu Ventana Medical Systems, Inc.

Breast cancer - Herceptin (trastuzumab)

- PATHWAY antiHer2/neu (4B5) Rabbit Monoclonal Primary Antibody Ventana Medical Systems, Inc. Breast cancer - Herceptin (trastuzumab), Kadcyla (ado-trastuzumab emtansine)
- InSite Her-2/neu KIT Biogenex Laboratories, Inc.

Breast cancer - Herceptin (trastuzumab)

- Bond Oracle HER2 IHC System, Leica Biosystems Breast cancer

Breast cancer -Herceptin (trastuzumab)

- HercepTest Dako Denmark A/S,

Breast cancer - Herceptin (trastuzumab) Perjeta (pertuzumab) Kadcyla (ado-trastuzumab emtansine) Gastric and gastroesophageal cancer- Herceptin (trastuzumab)

HER2 - CDx Immunohistochemistry Protocols

HER2 -
CDx IHC

ALK GENE REARRANGEMENT

ALK gene rearrangements are found in approximately 2% to 7% of patients with NSCLC*

ALK gene rearrangements represent a fusion between ALK and partner genes.
Once this fusion occurs, the gene acts as a driver of lung tumorigenesis and oncogenic activity

VENTANA ALK (D5F3) CDx Assay

Non-small cell lung cancer
Zykadia (ceritinib), Xalkori (crizotinib), Alecensa (alectinib),Lorbrena (lorlatinib)

ALK Protocols

LDTs tests for biomarkers ALK Run 107

Table S1. Self-reported ALK IHC staining protocols.

Lab ID	Ag Retrieval Method	Time for Ag Retrieval (min)	Ab Clone	Ab Dilution	Ab Supplier/ Vendor	Ab Lot No.	Time for Ab Incubation (min)	Detection System	Amplification (Y / N)	Enhancement (Y / N)	Chromogen
101	EnV FlexTRS, High PH	1 hour	5A4	1:25	Leica	6056459	40 min	DAKO Envision Flex	Y	N	DAB
102	DAKO PT - HIGH PH	20	5A4	1:40	LEICA	6064412	60" RT	DAKO ENVISION FLEX+	YES	YES CUSO4	DAB+
107	Dako FLEX TRS High pH	60	5A4	1:25	Novocastra	6071624	40	Dako FLEX	N	N	DAB
110	DAKO PT High ph 9.0@97 C	20 min	5A4	1:50	Biocare	82718	30 min	Dako Envision Flex	Y	N	DAB
112	BOND Epitope Retrieval 2 pH 9.0	30 minutes	5A4	1:25	Leica (Novocastra)	6069219	30 minutes	BOND polymer refine detection	none	none	DAB
113	High pH	30	5A4	1/25	Leica	6071624	27.5	$\begin{gathered} \text { DAKO Envision Flex } \\ \text { HRP } \end{gathered}$	N	N	DAB
114	Envision Flex TRS, High pH	60	5A4	1:25	Leica (novocastra)	6065605	40	Envision FLEX DAKO Omnis	Y	N	Envision Flex DAB
115	Envision Flex High PH	30 min	D5F3	1/100	Cell Signaling	3633S	30 min	Envision Flex	Y	N	DAB
120	HIER Waterbath	20	5A4	1:40	Biocare	21219	30	Dako Envision Flex	y	N	DAB
123	Roche CC1	92	5A4	1/100	Novocastra	6071624	60	Roche OptiView	Y	Y	DAB
136	Dako High pH	20	5A4	1:50	Leica	6071624	30	Dako Envision FLEX +	Y	N	DAB
146	FLEX TRS High	20	5A4	1:100	Biocare	112019	25	FLEX	n	n	DAB
149	high pH OMNIS	20 min at 97 C	OTI1A4	1:1000	Origene	0F004	26	EnVision Flex OMNIS	Yes	No	DAB
160	CC1	64 MIN	5A4	1/10	LEICA	6069219	32 MIN	OPTIVIEW	Y	Y	DAB
194	CC1	92	D5F3	RTU	ROCHE	E11917	16	OPTIVIEW	Y	Y	DAB
202	HIER PH9.0	20	5A4	10	NCL	6071624	15	BOND POLYMER REFINE DETECTION KIT	N	N	DAB
207	on line-high PH	30	OTI1A4	1/1000	Cederlane	W003	30	DAB Envision Flex	Y	N	DAB
220	HIER	92	5A4	1/30	NOVOCAST RA/LEICA	6071624	80	VENTANA OPTIVIEW	Y	Y	DAB
230	HIER	80	5A4	predilute	LEICA	66021	64	Optiview	Y	N	DAB

[^0]
CPQA EQA for ALK

PD-L1 Programmed Death-Ligand 1

- PD-L1 is associated with the activation of T-Cells and with immune response.
- PD-L1 is expressed in numerous tumour types and binds with the PD-1 receptor on T-Cells, deactivating the T-Cell and preventing an immune response against the tumour.
- A number of drugs have been developed to inhibit PD-L1 and have been used in Melanoma and NSCLC therapy.
- The overexpression of PD-L1 can be considered a biomarker of tumour response to immunotherapy.

PD-L1 Programmed Death-Ligand 1

PD-L1 IHC 28-8 pharmDx, Dako North America, Inc.
Non-small cell lung cancer (NSCLC)
OPDIVO (nivolumab) in combination with YERVOY (ipilimumab)
PD-L1 IHC 22C3 pharmDx, Dako North America, Inc.
Non-small cell lung cancer (NSCLC), gastric or gastroesophageal junction adenocarcinoma, cervical cancer, urothelial carcinoma, head and neck, squamous cell carcinoma (HNSCC), esophageal squamous cell carcinoma (ESCC), triple-negative breast cancer (TNBC) KEYTRUDA (pembrolizumab), Libtayo (cemiplimab-rwlc)

VENTANA PD-L1 (SP142) Assay, Ventana Medical Systems, Inc.
Urothelial carcinoma, Triple-Negative Breast Carcinoma (TNBC) and Nonsmall cell lung cancer (NSCLC)
TECENTRIQ (atezolizumab)

Protocols - Run 132 PD-L1

Lab ID	Platform/instrument	LDT or HC Kit	Ag Retrieval Method	Time for Ag Retrieval (min)	Ab Clone	Ab Dilution	Ab Supplier/ Vendor	Ab Lot No.	Time for Ab Incubation (min)	Detection System	Amplificatio n (Y/N)	Enhancemen $t(Y / N)$	Chromogen
107	Dako Autostainer Link 48	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	$22 \mathrm{C3}$	RTU	DAKO	11202433	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	N	Y	DAB
111	Dako Autostainer Link 48	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	$22 \mathrm{C3}$	RTU	DAKO	11166452	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	N	N	DAB
112	Dako Autostainer Link 48	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	60	$22 \mathrm{C3}$	RTU	DAKO	11202433	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	N	N	DAB
113	Dako Autostainer Link 48	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	$22 \mathrm{C3}$	RTU	DAKO	11198363A	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	Y	Y	DAB
114 SP142	Dako Omnis	LDT	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	60	SP142	1:25	Spring Bioscience	$\begin{aligned} & \text { GR3208476 } \\ & 21 \end{aligned}$	40	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	Y	N	DAB
114 SP263	Dako Omnis	LDT	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	30	SP263	1:5	Ventana Roche		20	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	Y	N	DAB
136	Dako Autostainer Link 48	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	$22 \mathrm{C3}$	RTU	DAKO	11202433	30	Envision FLEX HRP	Y	Y	DAB
138	Dako Autostainer Link 48	IHC Kit	$\begin{aligned} & \text { EnVision FLEX } \\ & \text { TRS, low pH: } 97^{\circ} \mathrm{C} \end{aligned}$	20	22C3	RTU	DAKO	11202433	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	Y	y	DAB
149	Dako Omnis	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	$22 \mathrm{C3}$	RTU	DAKO	11202433	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	Y	N	DAB
184 GE006	Dako Omnis	GE006	$\begin{aligned} & \text { EnVision FLEX } \\ & \text { TRS, low pH: } 97^{\circ} \mathrm{C} \end{aligned}$	40	$22 \mathrm{C3}$	RTU	DAKO	11211282	40	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	N	Y	DAB
184 SK005	Dako Autostainer Link 48	SK005	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	28-8	RTU	Agilent	11256998	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	N	Y	DAB
184 SK006	Dako Autostainer Link 48	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	$22 \mathrm{C3}$	RTU	DAKO	11265194	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	N	Y	DAB
194	Leica Bond III	LDT	ER2 (pH9)	40	22 C 3	1/20	DAKO	11175306	30	Refine	N	Y	DAB
202	Dako Autostainer Link 48	IHC Kit	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	20	$22 \mathrm{C3}$	RTU	DAKO	11139863	30	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	N	Y	DAB
207	Dako Omnis	LDT	EnVision FLEX TRS, low pH: $97^{\circ} \mathrm{C}$	60	22C3	1/30	DAKO	11199937	60	$\begin{aligned} & \text { Envision FLEX } \\ & \text { HRP } \end{aligned}$	Y	N	DAB
220	Ventana BenchMark Ulitra	LDT	CC1	48	22C3	1/40	DAKO	11175306	64	OPTIVIEW	N	Y	DAB
230	Ventana BenchMark Ultra	LDT	CC1	32	SP263	RTU	Roche Diagnostics	G03096	16	OPTIVIEW	N	N	DAB
249	Ventana BenchMark Ultra	IHC Kit	CC1	48	SP142	None	Ventana	G27114	16	OPTIVIEW	Y	N	DAB

Educational Run - PD-L1 22C3

Figure X. Composite images of participant staining using PD-L1 clone $22 C 3$.

MMR Immunohistochemistry

MMR enzymes play a role in recognizing and repairing erroneous base pairings that arise during DNA replication.
Four MMR enzymes (MLH1, MSH2, MSH6 and PMS2) are of clinical relevance.
Loss of MMR expression in the tumors of patients with colorectal or endometrial carcinoma identifies patients at increased risk for Lynch Syndrome (LS), an autosomal dominant cancer susceptibility syndrome that accounts for approximately 4% of cases of colorectal and endometrial carcinoma.
Lynch syndrome patients in a 50 to 80 percent lifetime risk of developing colorectal cancer.

CDx: VENTANA MMR Endometrial Carcinoma (EC) RxDx Panel Jemperli (dostarlimab-gxly) Mismatch repair deficient (dMMR) Solid tumors Jemperli (dostarlimab-gxly

Plus: Loss of expression of any MMR proteins - predictive of response to chemotherapy in colorectal carcinoma.

MMR Staining - When Positive is Negative

E	Expression		
A	Absence of Ex pression		
F	Failed		
U	Unsatisfactory		

Run 70 MMR MLH1

Lab/ Core	$\stackrel{\bar{\circ}}{ }$	$\stackrel{\mathrm{O}}{\circ}$	$\stackrel{9}{\circ}$	$\stackrel{\square}{\square}$	$\stackrel{\mid}{\circ} \mathrm{O}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{array}{\|c\|} \hline \stackrel{\circ}{\circ} \mathrm{F} \\ \hline \end{array}$	$\stackrel{\circ}{\div}$	$\underset{\sim}{\tau}$	$\underset{\underset{\sim}{\sim}}{\stackrel{N}{2}}$		$\stackrel{\infty}{5}$	$\begin{array}{\|c\|} \hline \stackrel{\circ}{r} \\ \hline \end{array}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\underset{\sim}{\text { N }}$	$\stackrel{\sim}{\sim}$	$\stackrel{\oplus}{\stackrel{\circ}{*}}$	$\begin{array}{\|l\|} \hline \infty \\ \stackrel{m}{\sim} \\ \hline \end{array}$	$\underset{\sim}{\tau}$	折	$\stackrel{4}{\sim}$	$\stackrel{\circ}{\ulcorner }$	$\frac{4}{2}$	$\underset{\sim}{\infty}$	$\stackrel{\oplus}{\odot}$	$\begin{array}{\|l\|} \hline \infty \\ \infty \\ \stackrel{2}{2} \\ \hline \end{array}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\text { Ñ }}{ }$	$\underset{N}{N}$	$\underset{\sim}{N}$	MMR status
1	A	A	A	A	A	A	A	A	A	A	A	U	U	U	U	A	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	U	MLH1
2	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH6
4	A	U	A	A	A	A	A	A	A	A	A	A	A	A	F	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	U	MLH1
5	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E	E	E	U	E	E	E	E	E	E	E	E	E	E	E	E	E	PMS2
6	E	E	U	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	PMS2
7	U	U	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
8	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH2
9	A	A	A	A	A	A	U	A	U	A	U	U	U	A	U	A	U	U	A	A	U	U	A	A	U	A	A	A	A	U	A	A	MLH1
10	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	U	A	A	A	A	A	MLH1
11	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH2
12	E	E	E	E	E	E	E	E	E	E	E	E	E	E	ᄃ	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	PMS2
15	E	E	E	E	E	E	E	E	E	E	F	E	E	E	F	E	E	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	MSH6
16	A	A	A	A	A	A	A	A	A	A	A	A	A	A	11	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
18	U	U	U	U	U	U	U	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH6
19	E	U	U	U	A	A	U	A	A	U	A	A	A	A	A	A	A	U	U	U	A	A	U	U	A	U	U	A	A	A	U	A	MLH1
20	U	U	U	U	U	U	U	A	A	A	A	A	A	A	A	U	A	U	A	U	A	A	U	A	A	U	U	A	U	A	U	A	MLH1
21	A	A	A	A	A	A	A	A	A	A	A	A	A	A	F	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
22	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
23	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH2
26	A	A	A	A	A	A	A	A	A	A	A	U	U	U	F	A	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
27	F	A	A	A	A	A	A	A	A	A	F	A	A	A	F	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1/MSH6
32	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
33	A	A	U	A	A	A	A	A	A	A	A	U	U	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	PMS2
34	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	F	A	A	A	A	A	MLH1
38	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH2

Run 70 Core 15 MLH1

Run 70 PMS2

Lab/ Core	음	ㅇ	응	O	○	은	응	$\stackrel{\circ}{7}$	\mp	$\frac{N}{\tau}$	$\underset{\tau}{\tau}$	$\frac{10}{\square}$	$\frac{0}{7}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{ \pm}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\underset{\sim}{\mathbf{N}}}{\substack{2}}$	$\begin{array}{\|l\|l} \hline \underset{\sim}{2} \\ \hline \end{array}$	$\underset{F}{F}$	$\underset{f}{f}$	$\frac{10}{20}$	$\underset{\sim}{9}$		$\underset{\Gamma}{\infty}$	$\begin{array}{\|l\|} \hline \infty \\ \propto \end{array}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{N}{N}$	$\frac{N}{N}$	$\stackrel{N}{N}$	$\underset{N}{N}$	\bar{N}	MMR status
1	A	A	A	A	A	A	A	A	A	A	A	U	U	U	U	A	A	U	U	A	A	A	A	A	A	A	A	A	A	A	U	MLH1
2	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH6
4	A	U	A	A	A	A	A	A	A	A	A	A	A	A	F	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	U	MLH1
5	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	PMS2
6	A	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	E	A	A	A	A	PMS2
7	U	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
8	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH2
9	A	A	U	A	A	U	U	A	U	A	U	U	U	U	U	A	A	U	U	A	A	U	U	U	A	A	A	A	U	A	A	MLH1
10	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	U	A	A	A	A	A	MLH1
11	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	U	MSH2
12	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	F	A	E	A	A	A	A	PMS2
15	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	MSH6
16	A	A	A	A	A	A	A	A	A	A	A	A	A	A	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
18	U	U	U	E	U	U	U	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH6
19	U	U	U	U	A	A	U	A	A	U	A	A	A	U	A	A	U	A	A	U	U	A	U	A	A	U	U	A	A	U	A	MLH1
20	U	U	U	U	U	U	U	A	A	A	A	A	A	A	A	U	U	A	A	A	U	A	U	A	A	A	A	A	A	A	A	MLH1
21	A	A	A	A	A	A	A	F	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
22	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
23	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	MSH2
26	A	A	A	A	A	A	A	A	A	A	A	U	U	U	A	A	A	U	U	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
27	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	F	MLH1/MSH6
32	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
33	A	A	F	A	A	A	A	A	A	A	A	A	U	U	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	PMS2
34	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MLH1
38	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MSH2

Run 70 PMS2 Core 8

Run 70 MSH 2

Lab/ Core	$\overline{\mathrm{o}}$	N	$\stackrel{\circ}{\circ}$	¢	\bigcirc	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { 안 }}{ }$	\bar{F}	$\frac{7}{7}$		-	$\stackrel{\square}{\square}$	$\stackrel{\oplus}{\leftarrow}$	$\stackrel{\sim}{\sim}$	$\stackrel{-}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\circ}$	\cdots	F	7		$\stackrel{8}{\square}$	$\stackrel{\square}{\sim}$	$\underset{\sim}{\infty}$	$\stackrel{-}{\square}$	\bigcirc	$\stackrel{\infty}{\square}$	$\underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\sim}{N}$	$\underset{N}{N}$	$\bar{\sim}$	MMR status
1	E	E	E	E	E	E	E	E	E	E	E	E	E	E	U	U	E	E	E	U	E		E	E	E	E	E	E	U	E	E	E	E	U	MLH1
2	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MSH6
4	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	U	E	E	E	E	E	MLH1
5	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	PMS2
6	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	PMS2
7	U	U	E	E	E	E	E	E	E	E		E	E	E	E	E	U	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
8	A	A	A	A	A	A	A	A	A	A A	A	A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	A	A	A	A	A	A	A	MSH2
9	E	E	E	E	E	E	U	E	U	U E		U	E	E	E	E	E	E	E	E	E		E	\cup	E	E	E	E	E	E	E	U	E	E	MLH1
10	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
11	A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	A	F	A	A	A	A	A	MSH2
12	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	F	E	E	E	E	E	PMS2
15	F	E	E	E	E	F	E	E	F	E	F	F	E	F	F	F	E	E	E	E	E		F	E	E	E	F	E	A	A	F	F	F	F	MSH6
16	E	E	E	E	E	E	E	E	E	E		E	E	E	E	U	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
18	U	U	U	U	E	U	U	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MSH6
19	E	E	E	E	E	U	U	E	E	U		E	E	E	E	E	E	U	E	E	E		U	E	U	U	E	E	E	U	E	E	E	E	MLH1
20	U	U	U	U	U	U	U	E	E	E		E	E	E	E	E	U	E	E	E	E		E	E	U	E	E	U	E	E	E	E	E	E	MLH1
21	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
22	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
23	A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	A	E	A	A	A	A	A	MSH2
26	E	E	E	E	E	E	E	E	E	E		E	U	U	U	E	E	E	E	U	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
27	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	F	E	F	E	E	E	E	E	MLH1/MSH6
32	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
33	E	E	E	E	E	E	E	E	E	E		E	U	U	U	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	PMS2
34	E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E		E	E	E	E	E	E	E	E	E	E	E	E	MLH1
38	A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	A	A	A	A	A		A	A	A	A	A	A	F	A	A	A	A	A	MSH2

Run 70 MSH6

Lab/ Core	$\overline{\mathrm{\sigma}}$	은	음	암	\bigcirc	은	은	읃	$\underset{\sim}{\Sigma}$	$\frac{\mathrm{N}}{\mathrm{~F}}$	$\underset{\sim}{\pi}$	$\frac{\stackrel{\sim}{\sim}}{\sim}$	$\frac{\varphi}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$		$\underset{\sim}{\infty}$	$\overline{\mathcal{F}}$	扣	$\stackrel{\square}{\sim}$	守	$\stackrel{\stackrel{\sim}{\circ}}{\stackrel{\circ}{\sim}}$	$\stackrel{\Gamma}{\infty}$	$\begin{array}{\|c\|} \hline \infty \\ \stackrel{\infty}{\circ} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \underset{\infty}{\circ} \\ \hline \end{array}$	No	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{N}{N}$	N্N	$\underset{N}{N}$	$\bar{\sim}$	MMR status
1	E	E	E	E	E	E	E	E	E	E	E	E	E	E	U	E	E	E	U	E	E	E	E	E	E	E	U	E	E	E	E	U	MLH1
2	A	A	E	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MSH6
4	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	U	E	E	E	E	E	MLH1
5	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	PMS2
6	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	PMS2
7	U	U	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MLH1
8	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MSH2
9	E	E	E	E	E	E	\cup	E	U	E	E	E	E	E	E	E	E	U	E	E	E	U	U	E	E	E	E	E	\cup	\cup	E	E	MLH1
10	E	E	E	E	E	E	E	E	E	E	E	E	E	A	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	A	MLH1
11	A	E	A	A	A	A	A	A	E	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	MSH2
12	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	PMS2
15	F	F	F	A	A	A	F	A	A	F	F	A	A	F	F	A	A	F	A	A	A	A	A	F	A	A	A	F	A	F	F	F	MSH6
16	E	E	E	E	E	E	E	E	E	E	E	E	E	E	U	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MLH1
18	U	U	U	U	U	U	\cup	A	A	U	A	A	A	A	A	A	A	A	A	F	A	A	A	U	A	U	A	F	A	A	A	A	MSH6
19	E	E	U	E	E	U	\cup	E	E	U	E	E	U	E	E	U	U	E	E	U	U	E	U	\cup	U	E	E	U	E	E	E	E	MLH1
20	U	U	U	U	U	\cup	U	E	E	E	E	E	E	E	E	E	E	E	E	U	U	E	E	U	E	U	E	E	E	E	E	E	MLH1
21	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MLH1
22	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MLH1
23	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	E	A	A	A	A	A	MSH2
26	E	E	E	E	E	E	E	E	E	E	E	E	U	U	E	E	E	U	\cup	E	E	E	E	E	E	E	E	E	E	E	E	E	MLH1
27	U	A	A	A	A	A	E	A	A	A	A	A	A	A	A	A	A	A	A	F	E	A	A	E	A	A	A	F	A	A	A	E	MSH6
32	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MLH1
33	E	E	E	E	E	E	E	E	E	E	E	E	U	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	PMS2
34	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	MLH1
38	A	A	A	A	A	A	A	A	A	A	E	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	F	A	A	A	A	A	MSH2

THE CHALLENGES AHEAD FOR LABS \& EQA

- New biomarkers and technologies are continually arriving. Labs are under pressure to quickly adapt diagnostic processes whilst maintaining quality
- EQA schemes are increasingly in demand and have limited resources
- The interaction of labs and industry is fragmented would benefit from coordination
- Well-designed EQA/PT schemes are an important mechanism for high quality clinical implementation of biomarker testing and improves patient care - Keeping precision medicine precise
- Adaption of new tools like AI

THE CHALLENGES AHEAD- KEEPING PRECISION MEDICINE PRECISE

PathoGate.net

Online platform for teaching, training and quality assurance in pathology

- Build modules by linking images with questions, annotations and guidance documents
- Combine clinical information with macroimages, X-rays/scans and whole slide images to build complete patient cases
- Split TMA slides to work with individual cores
- Invite admins and participants, or make the module publicly available as you wish

Build patient cases

Split-view for linking with H\&E

KEEPING PRECISION MEDICINE PRECISE

 CPQA collaboration with PathoGate.net

To provide online educational and self-assessment modules for a series of IHC biomarkers

- Material is based on CPQA collection of TMA slides from previous quality runs
- TMAs are split to individual cores using simple annotations generated on the platform

- Relevant questions are assigned to the images
- Participants will get access to a training set and an assessment set for each marker

The HER2 expression in Gastric Carcinomas

The HER2 expression in Gastric Carcinomas is scored as $0,+1,+2$, +3 or (U) unsatisfactory based on membranous reactivity (specification in attached document):

Score: The HE

Synthetic Clinical Grade Cancer Images

a

b

THE CHALLENGES AHEAD - NEW BIOMARKERS

ALK Cell Lines

Lung: EML4-ALK translocation

Lymphoma NPM-ALK translocation

Quantitative HER2 Analyte Control Cell Lines

Histoids for Quantitative Positive Control

Histoids are tumour cell lines grown in a matrix of normal stromal cells to give the appearance of tissue. www.statlab.com

The Challenges Ahead -TRK (pan-TRK) Collaboration

Canadian Pathology Quality Assurance

TRK fusion cancers occurs when NTRK gene fuses with another gene and creates overexpression of the TRK protein which results in tumour growth.

TRK fusion cancer occurs across a broad range of different tumours.

Low incidence in certain cancers (ie CRC 1.5\%)
Larotrectinib (Bayer) is considered to be tissue agnostic developed and approved to treat any cancer containing N-TRK fusions.

"First treatment for TRK fusion cancer approved."

Bayer

Global crowdsourcing hard to locate biosamples

Helping labs by coordinating and assisting with biomarker test validation and provide them a vigilant EQA program

T H A N K Y O U

Canadian Pathology Quality Assurance

The CPQA-AQCP Team
Dr. Blake Gilks
Dr. Bob Wolber
Ms. Vidya Beharry
Mr John Garratt
Dr. Jennifer Won

[^0]: Laboratory Developed Tests | FDA

