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Introduction

The objective of this tech note is to provide the reference circuit design for our most demanded InGaAs
linear image sensor (LIS) series. This reference design can be used to drive the Hamamatsu one-stage
TE-cooled InGaAs LIS G9201-256SB, G9202-512SB, G9203-256SA, G9204-512SA, G9211-256SB, G9212-
512SB, G9213-256SA, G9214-512SA, and the two-stage TE-cooled InGaAs LIS with extended cutoff
wavelength G9205-256/512WB, G9206-256/512WB, G9207-256WB, G9208-256/512WB. Please note:

this reference circuit cannot drive the InGaAs LIS series including G14237-512WA, G11508-256/512SA,
G11475-256/512WB, G11476-256WB, G11477-256/512WB, G11478-256/512WB, G11620-256/512SA, and
G12230-512WB. For further information about the G11508/G1147x series please refer to
https://lwww.hamamatsu.com/resources/pdf/ssd/g11508_etc_kmir1032e.pdf.

These InGaAs LIS series are designed for near infrared multi-channel spectrophotometry, non-destructive
inspection, and DWDM wavelength monitor applications. These sensors consist of an InGaAs photodiode
array, charge amplifiers, offset compensation circuit, and timing generator formed on a CMOS chip. The
spectral response characteristics of these series that the reference circuit can support is as follows:
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Figure 1-1: Spectral response
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In this tech note a system design including the analog front-end sensor board, the FPGA modules, the USB
processor, and the data acquisition software is described. And the test results of the I/O signals, noise, and
linearity are presented for various pixel formats and timing control modes.



System Description

The system includes four boards: the analog front-end (AFE) sensor board, the FPGA board, the USB
board, and the interconnect board. The AFE sensor board was developed by Analog Devices, Inc. in
collaboration with Hamamatsu; this board includes a Hamamatsu InGaAs linear array, followed by a
1MSPS SAR ADC with integrated ADC driver. The board also includes a TEC controller and all of the
required voltages conditioning to drive the sensor. The FPGA board issues the control signals to the sensor
via the Analog Devices AFE sensor board. The interconnect board is a passive device joining the FPGA
development board, USB development board and Analog Devices AFE sensor board together. The overall
system interconnection is shown in Figure 2-1.

The data returned by the sensor in response to the FPGA control signals is processed through the A/D
converter on the Analog Devices AFE sensor board and received by the FPGA board. The FPGA sends the
processed data to the USB processor via the EZ-USB FX3® Slave FIFO Interface for subsequent transfer to
a PC.

The data stream received from the Analog Devices sensor board consists of 16-bit words, each representing
a single pixel value. The system supports two pixel formats: 256-pixel and 512-pixel mode. The pixel data
rate is adjustable from 10KHz to 500KHz, resulting in data throughput of 160Kbps~8Mbps.

The FPGA board is controlled by the USB processor (EZ-USB FX3®) via an 12C interface with the processor
acting as an 12C master and the FPGA as an |12C slave. The control is accomplished via a set of the R/W
control/status registers in the FPGA memory space. Refer to subsequent sections for the details of the
control/status register space and the 12C access protocol.

The logic/flow diagram is shown in Figure 2-2.
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Figure 2-2: Logic/Flow diagram
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Analog Devices Sensor Board

3A. Theory of Operation and 12C and SPI Device Descriptions

Developed by Analog Devices, Inc. in collaboration with Hamamatsu, this board includes a Hamamatsu
G920x InGaAs array, followed by two buffer amplifiers, a multiplexer to select a voltage from one of

these two amplifiers, and a TMSPS SAR ADC with integrated ADC driver. The board also includes a TEC
controller and all of the required power conditioning to power the board from an AC adapter. The product
selections were chosen to exceed the performance targets of the solution and provide high integration to
enable a small footprint and simplicity of design. For more information about the devices chosen for use in
this design, please refer to
https://www.analog.com/en/technical-articles/integration-collab-at-heart-of-hi-perf-image-sensor-ref-
design.html

Although the board does not conform to ANSI/VITA FMC standards due to the form factor and AC adapter
power input, the connector area is designed to be able to interface with most FMC-compliant FPGA
development boards in order to provide increased flexibility of target platform.

3B. Providing Power to the Board

Provide 9VDC, 1.5A or greater through barrel connector J2 (recommended: CUI, Inc. SMI24-9-V-P5 or
similar). Although there is reverse power protection on the board, ensure that the polarity of the AC adapter
is center positive for proper operation. For alternative InGaAs array variants, consider the power required by
the TEC and ensure enough power is provided. This reference design board can support up to 3A maximum
TEC current at up to 5V. A 9V, 2A AC adapter is enough to support a full 3A TEC current due to the high-
efficiency 9V to 5V step-down buck regulator (the LTM8053) that is on the board. The power input features
reverse protection, a 6A slow-blow fuse, and a 15V bidirectional TVS to protect the board from power supply
transients. When using one of the G920x variants which has a 5V, 1.8A TEC, total power draw from the 9V
AC wall adapter can be roughly 1.2A at maximum TEC drive.



3C. Array and Buffers
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Figure 3-1: Sensor and buffers




Depending on the variant, the array has up to two analog outputs, called ‘Video-even’ and ‘Video-odd’,
which are suggested to be buffered in the array datasheet. For the 512-pixel versions of the array, the even
pixels come out on one line while the odd pixels are shifted out on the other line. The amplifier and filters are
chosen to settle faster than the array, which specifies a 600ns output settling time. Provisions are included
to match input resistances for the amplifier by placing 499Q at R62 and R63 to reduce DC errors due to
input bias current. If the 499Q R62 and R63 are installed, it may be necessary to install C37 and C38 to
neutralize the resulting input pole and avoid instability. The analog output of the array can go from 0.76V to
4.5V.

3D. Even-Odd Switch
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Figure 3-2: Even-odd multiplexer

A single-pole dual throw (SPDT) solid-state switch follows the even and odd pixel buffer amplifiers and
connects one of the two to the ADC. A default pull-up resistor sets the switch to odd when floating, which is
the correct side for the 256-pixel arrays. A 499Q resistor ensures stability of the buffers driving the switch
capacitance and reduces current spikes during switching.



3E. ADC Driver and ADC
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Figure 3-3: ADC

The ADC driver is integrated into the ADAQ7980. By default, this stage is in unity-gain, which provides the
optimal settling and does not negatively affect the noise. Provisions and recommendations are included to
match the input to the full-scale 0-5V input range of the ADC if desired. The ADAQ7980 ADC is a 16-bit,
1MSPS SAR ADC with an integrated ADC driver, reference buffer, LDO, and necessary passives that is
connected to the SPI bus. For more information about this integrated signal chain, refer to
https://www.analog.com/en/technical-articles/integration-collab-at-heart-of-hi-perf-image-sensor-
ref-design.html. The reference voltage is 5V, so one LSB represents 76.3pV.

3F. Serial Devices
There are a total of 4 serial devices on the reference board:

SPI Bus
* One AD5235 dual 25k, 1024-position digital potentiometer
* One ADAQ7980 16-bit ADC

12C Bus
* One AD7991 12-bit ADC
* One AD5627 12-bit DAC



3G. AD5235 Dual Potentiometer and Bias Divider
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Figure 3-4: Dual POT for Vref and INP bias voltages

The programmable bias voltages for the sensor are derived from a voltage divider off of the precision
ADRA4550 5V voltage reference used for the ADC. Potentiometer 1 controls the INP voltage from
approximately 2.5V at maximum code to approximately 5V at minimum code. Potentiometer 2 controls the
VREF_SENSOR voltage from approximately 1V at minimum code to approximately 2V at maximum code.
When potentiometer 1 is set to its lowest value of 0, the INP voltage is 5V. When INP is set to the maximum
value of 1023, the INP voltage is 2.5V. Intermediate values can be calculated according to the following
equation:

Equation 1
_ D
Vine =5V — 2.5V (57

where D can range from 0 to 1023. Note that although the AD8606 is a ‘rail to rail’ output amplifier, it will only
get to about 4.96V, so writing values lower than ‘16’ to the rheostat may not result in the desired output. This
should not be a problem because the maximum bias voltage specified in the G920x datasheet is 4.6V. The
default value written to this rheostat should be 205d (0xCD) to get 4.5V.

Potentiometer 2 controls the Vref voltage going to the array. When the potentiometer is set to its lowest

value of 0, the output on the Vref pin is 1V. When the potentiometer is set to its highest value of 1024, the
output on the Vref pin is 2V. Intermediate values can be calculated according to the following equation:

8



Equation 2
_ D
Vives = 1V + 1V (m)

where D can range from 0 to 1023. Vref should be set to a default value of 1.26V by writing 266d to the
potentiometer (0x10A).

3H. AD7991 ADC
Note: I2C address: 010 1001

The AD7991 is a 12-bit ADC with a 2.5V reference provided by the ADN8835, so each LSB represents
610uV. Channel 0 is used to measure the amplified and linearized thermistor output from the ADN8835.

The thermistor uses a simple linearization circuit that results in an output of approximately 26.53mV/°C from
-10°C to 40°C, with an offset of 0.566V.

To convert from volts to approximate temperature, use the following equation:

Equation 3

ADC Output

Temperature = ( 1096

1°C
- 2500mV — 566mV ) - z=C

This approximation will result in errors of slightly over 1°C at -10°C and 40°C, and nearly zero error at 15°C.
Note that it is possible to write voltages lower than 0.239V, which will result in a lower setpoint temperature.
However, the above approximation will result in large errors. For example, the equation above predicts that
0V corresponds to -21.3°C, while the true temperature would be close to -29°C.
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Figure 3-5: Thermistor linear approximation error




If higher accuracy conversion is required, use the following equation:

Equation 4
et \ !
( be + Vout 1
Rigp | 125V
In| — =
1
Temperature (degrees K) = | = + =
T

where:

Temperature = The thermistor temperature in degrees Kelvin

Tr = 298.15K (Temperature at which nominal thermistor resistance is specified)
Ry = 5kQ (Nominal thermistor resistance at T;)

B = 3200K (Thermistor constant given in the datasheet)

Ry = 5.11kQ (R43 in the schematic)

Rtop = 10kS2 (R32 in the schematic)

Rip = 12kQ (R31 in the schematic)

Note: Using this equation results in linearity error dominated by the number format precision used, and
should be negligible if implemented in floating point on a PC.

Channel 1 is used to measure the linearized thermistor output from the ‘hot’ side of the heatsink. The
same equation as above can be used to convert volts to temperature, assuming the same thermistor is
used. Note that once again, the approximate equation will lose accuracy above 40°C, and the full equation
should be used if higher temperatures are expected. If a different thermistor is used, then the equation will
vary depending on the thermistor’'s characteristics. For proper operation, the REF_SEL bit in the AD7991’s
Configuration Register must be set to ‘1’ (this uses the Vin3/Vref pin as the converter reference).

10
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3l. DAC

Note: 12C address: 000 1110

The AD5627 DAC controls the temperature setpoint for the TEC controller. To calculate the temperature
setpoint based on the output data written, use the following equation:

Equation 5

Temperature Setpoint = (

DAC Output
4096

11

. 5000mV — 564mv) -

1°C
26.53mV
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3J. TEC Controller

The ADN8835, a TEC controller with integrated 3A power FETs, is used to very accurately control the
temperature of the image sensor array. The AD5627 sets the temperature setpoint and the AD7991 reads
the hot side and cold side thermistor temperatures. The TEC Voltage Limit and Current Limit are set by
resistor dividers tailored to the values needed for the G920x family. To change these limits to accommodate
a different family of image sensors with different TEC requirements, see Analog Devices UG-951 for
suggestions on the resistor value. For more information on thermoelectric cooler control, refer to ADN8835
datasheet. It may also be necessary to adjust the analog PID components and thermistor components in
order to accommodate other sensors. The EN/SY pin is pulled up in order to be enabled by default, but

the TEC controller can be shut down if this signal is pulled low by the FPGA. This pin can also be used for
synchronization, as described below.

SHUTDOWN

TEC
CURRENT
ENABLE/ TEC
SYNC VOLTAGE
Fa
S = ~
EN/SY TMPGD ITEC VTEC VDD

PVINL

) Vin
BPS 2.7VTO 5.5V

PVINS

VLIM/SD
| TEC
Rviz 3Rvz o 1ace
LIMIT
TEC ILIM
CURRENT
LIMITS
ADN8835
VREF
3R AGND
IN2P
IN1P
| NN Guti NN our2
2 Rx 2 Re Res$ 9, \9
3 c
L wre Ji [ Re Y
Rrn :
Rp Cp Cr
THERMISTOR D IH |

Figure 3-8: TEC control
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Indicators and Test Points

Ultralow power LEDs are provided to indicate temp good from the ADN8835 (DS4) and power good for all
power rails: DS3 indicates POS5V_TEC, DS2 indicates POS7VA, and DS1 indicates POS5VD/POS5VA
power good. Surface mount test points are provided for many signals to be probed, especially in the dense
TEC control portion of the circuit, along with corresponding ground test points.

Synchronization Feature and LTM8053 Modes

To remove any switching clock intermodulation from the circuit, this design can be fully synchronized.
ADN8835 can be synchronized by driving the shutdown signal, BAR_TEC_SD, with a clock between
1.85MHz and 3.25MHz. LTM8053 can also be synchronized by installing a provisional zero ohm resistor
in position R35 to connect its SYNC pin to the BAR_TEC_SD signal. This reduces the maximum
synchronization clock frequency to 3MHz. The clocks of both of these devices may be synchronized to a
clock output from the FPGA that is synchronous with the sensor pixel clock signals, and the ADAQ7980
samples may be taken at integer multiples of the sync clock frequency, eliminating the effect of switching
noise on the measurement. For more information, see the notes on the schematic and the ADN8835 and
LTM8053 datasheets. The full complement of SYNC/MODE options for LTM8053 are described in the
schematic. By default, the ADN8835 and the LTM8053 are both running on their internal clocks and the
LTM8053 is in pulse-skip mode.

Figure 3-9: SYNC / mode selection
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FPGA/USB Processor Data Path
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Figure 4-1: FPGA to EZ-USB FX3 interface

EZ-USB FX3
Processor

The pixel data is transferred between the FPGA and the USB processor using a 16-bit Synchronous Slave

FIFO interface operating at 80MHz.

The data stream consists of 16-bit pixel word comprising 256 or 512 pixels per line.

The line-to-line separator consists of 2x 16-bit marker words:

Marker Word 1: OxAAAA
Marker Word 2: 0x5555

The marker words appear in sequence: Marker Word 1, followed by Marker Word 2. The marker words are
intended to serve the function equivalent to V-sync in video frames. Note: There is no equivalent H-syncs

as the frame is a single line.
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4A. Interface Configuration

Table 4-1 Data Path I/O Configuration

CYUSB3014-BZX Pin Synchronous
Slave FIFO
Interface
with 16-bit
Name Location
Data Bus
GPIO[17] Ke SLCS#
GPIO[18] K7 SLWR#
GPIO[19] J7 SLOE#
GPIO[20] H7 SLRD#
GPIO[21] G7 FLAGA
GPIO[22] G6 FLAGE
GPIO[23] K& FLAGC
GPIO[25] G FLAGD
GPIO[24] Ha PKTEND#
GPIO[28] J5 Al
GPIO[29] H5 AD
GPIO[Q] F10 DQ[0)
GPIO[1] Fa Da(1)
GPIO[2] F7 DQ(z)
GPIO[3] G10 DQ(3]
GPIO[4] G9 DQ(4)
GPIO[5] F& DQ(5]

Interconnect FPGA Pin
Board
Net Name
Data Path

CTLO L1
CTLA L4
CTL2 W2
CTL3 L3
CTL4 L18
CTLS L6
CTLE P2
CTLe T3
CTL? P1
CTL1 G18
CTL12 K18
D2[0] Hé
Daf1] D03
DQ[2] M5
D3] L6
DG[4] T1
DQ[5] M3
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EZ-USB

FPWB
[ I{e]
Voltage

VIO

VIO

VIO

VIO

VIO

Nile)]

VIO

Nile)]

VIO

VIO

VIO

VIO

VIO

VIO

VIO

Nile)]

VIO

Description

This is the chip select signal for the Slave FIFQ interface.

It must be asserted to access Slave FIFO.

This iz the write strobe for the Slave FIFO interface. It
must be asserted for performing write transfers to Slave
FIFO.

This is the ocutput enable signal. It causes the data bus of
the Slave FIFO interface to be driven by FX3. It must be
asserted for performing read transfers from Slave FIFO.
This is the read strobe for the Slave FIFO interface. It
must be asserted for performing read transfers from
Slave FIFO.

These are the FLAG outputs from FX3.

The FLAGs indicate the availability of an FX3 socket.

FLAGA is configured as Current_thread_DMA_RDY.

FLAGBE is configured as Current_thread DMA_watermark

This signal is asserted to write a short packet or a zero
length packet to Slave FIFO.

This is the 2-bit address bus of Slave FIFO

This is the 16-bit data bus of Slave FIFO.



Table 4-1 Data Path I/O Configuration

CYUSB3014-BZX Pin

Name

GPIO[6)

GPIO[7)

GPIO[8]

GPIO[9]

GPIO[10]

GPIO[11]

GPIO[12]

GPIO[13]

GPIO[14]

GPIO[15]

GPIO[16]

Location

H10

H9

J10

J9

K11

L10

K10

K9

Jg

G8

J6

Synchronous
Slave FIFO
Interface
with 16-bit
Data Bus

DQ[6]

DQ[7]

DQ[8]

DQ[9]

DQ[10]

DQ[11]

DQ[12)

DQ[13]

DQ[14]

DQ[15]

PCLK

Interconnect FPGA Pin
Board
Net Name
Data Path
DQ[6] N7
DQ[7) T2
DQ[8] N8
DQ[9] H15
DQ[10] J13
DQ[11] H16
DQ[12] N10
DQ[13] N16
DQ[14] N11
DQ[15] N15

HSMC_CLKOUT_p2 u18

16

EZ-USB
PWB
I}
Voltage

VIO1

VIO1

VIO1

VIO1

VIO1

VIO1

VIO1

VIOt

VIO1

VIOt

VIO1

Description

Slave Interface clock 80 MHz.
Note: Jumper on interconnect board from J3.44 to J2,155
needed



4B. EZ-USB Development Board Configuration

Table 4-2 EZ-USB Development Board Configuration

PWB Reference Designator Configuration (Jumper/Switch Setting)
J40 Open

J42 2-3 shorted
J45 2-3 shorted
Ja7 Open

J50 Open

Js2 2-3 shorted
J53 1-3 shorted
J72 1-2 shorted
J74 Open

Jog Open

Ja7 2-3 shorted
J96 2-3 shorted
J100 1-2 shorted
J101 2-3 shorted
J102 2-3 shorted
J104 1-2 shorted
J103 1-2 shorted
J125 1-2 shorted
J134 3-6 shorted
J135 2-4 shorted
J136 2-5 shorted
J143 2-5 shorted
J144 2-5 shorted
J145 2-5 shorted
J146 2-5 shorted
J156 Open

17



Table 4-2 EZ-USB Development Board Configuration

PWB Reference Designator Configuration (Jumper/Switch Setiing)

SW25 1= OFF
2= OFF
3= 0N
4= 0N

SW40 1=ON
2=0N
3=0N
4=0N

Figure 4-2: Cypress EZ-USB development board configuration
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4C. FPGA/USB Processor Interface
The USB processor configures the FPGA control registers via 12C interface as described in Section 5. Once
the desired configuration parameters have been set, the USB processor sets Reg_01 bits (7:6) = “11”,

enabling the sensor control and the Slave FIFO operation.

The USB processor can disable the sensor control and/or Slave FIFO operation at any time in order to re-
configure the control registers.

19



FPGA/USB Processor Control/Status Path

Table 5-1 Control Path I/O Configuration

CYUSB3014-BZX Pin Synchronous
Slave FIFO
Interface
with 16-bit
Name Location
Data Bus
12C_GPIO[58] D9 12C_SCL
12C_GPIO[59] D10 12C_SDA

5A. Access Protocol

Interconnect FPGA Pin EZ-USB
Board PWB
Net Name I/0
Voltage
Control/Status Path
USB_SCL L13 VIOS
USB_SDA M14 VIOS

1. The FPGA acts as 12C slave with address OxAA.

2. EZ-USB FX3 processor acts as an 12C master.

3. Each 12C write transfer consists of the following:

3-1. START (generated by master)

3-2. Byte 1 = OxAA

3-3. ACK (generated by the slave)

3-4. Byte 2 = Selected control register address

3-5. ACK (generated by the slave)

Description

SCL line of the 12C control bus
Note: Jumper on interconnect board from
J3.88 to J2.132 needed

SDA line of the 12C control bus
Note: Jumper on interconnect board from
J3.86 to J2.134 needed

3-6. Byte 3 = Data byte to be written to the selected FPGA control register address

3-7. ACK (generated by the slave)

3-8. STOP

20



4. Each single byte 12C read transfer consists of the following:
4-1. START
4-2. Byte 1 = OxAA
4-3. ACK (generated by the slave)
4-4. Byte 2 = Selected control register address
4-5. ACK (generated by the slave)
4-6. RESTART
4-7. Byte 3 = OxAB
4-8. ACK (generated by the slave)
4-9. Byte 4 = Data byte from the selected control register returned by the FPGA
4-10. NACK (generated by the master)

4-11. STOP

21



5. Each multi-byte 12C read transfer consists of the following:
5-1. START
5-2. Byte 1 = OxAA
5-3. ACK (generated by the slave)
5-4. Byte 2 = Selected control register address
5-5. ACK (generated by the slave)
5-6. RESTART
5-7. Byte 3 = OxAB
5-8. ACK (generated by the slave)
5-9. Byte 4-1 = Data byte from the selected control register returned by the FPGA
5-10. ACK (generated by the master)
5-11. Byte 4-2 = Data byte from the selected control register returned by the FPGA
5-12. ACK (generated by the master)
5-13. Byte 4-3 = Data byte from the selected control register returned by the FPGA
5-14. ACK (generated by the master)
5-15. Byte 4-4 = Data byte from the selected control register returned by the FPGA
5-16. NACK (generated by the master)
5-17. STOP
Note: The number of bytes read is not limited to 4 (the 4 bytes read transfer is shown as an example only).

As additional bytes are being read, the address pointer is auto-incrementing, starting from the address
specified by Byte 2.
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5B. Memory Space/Register Definitions

Table 5-2 Memory Space/Register Definitions

Address

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

Name

Reg_00

Reg_01

Reg_02

Reg_03

Reg_04

Reg_05

Reg_06

Reg_07

Access

R/O

R/W

RW

R/W

R/W

R/w

RW

R/w

Default

0xCO

O0x0A

0x00

0x39

0x03

0x00

0x00

Bit/Field

7.0

7:1

7.0

7:0

7.0

7.0

Register Name/Field Description
FPGA F/W Revision

Mode Control Register

Pixel Mode:

0 = 256-pixel mode

1 = 512-pixel mode

Interface Speed:

0 = Normal-speed operating mode
1 = High-speed operating mode

Pixel Clock Control Low

Clock_Divider(7:0]

Pixel Clock Control High

Clock_Divider([8]

Note: Writing to Reg_0x03 sets the Clock_Divider[9:0] to the values of registers
Reg_02 and Reg_03.

Writing to Reg_02 alone does not change the value of the Clock_Divider([8:0].
Clock_Divider[8:0] is used to set the internal FPGA clock enable used to generate
odd and even clocks. The relationship between the divider value and the odd/even
clocks is:

B60MHz/(2 x Clock_Divider).

The Clock_Divider(8:0] valid values are in the range from 1 to 511. Refer to Table
5-3 for select clock divider settings.

Reserved

Integration Time Byte O

Integration_Time[7:0]

Integration Time Byte 1

Integration_Time[15:8]

Integration Time Byte 2

Integration_Time[23:16]

Integration Time Byte 3

Integration_Time[31:24]

Note: Writing to Reg_0x07 sets the Integration_Time[31:0] to the values of registers
Reg_07, Reg_06, Reg_05 and Reg_04.

Writing to Reg_05, Reg_06 or Reg_07 alone does not change the value of the
Integration_Time[31:0).

The units are periods of Odd/Even Clock Rate in accordance with Table 5-3.
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Table 5-2 Memory Space/Register Definitions

Address

0x08

0x09

Ox0A

0x0B

0x0C

0x0D

Ox0E

OxOF

0x10

Ox11

0ox12

Name

Reg_08

Reg_09

Reg_OA

Reg_0B

Reg_0C

Reg_0D

Reg_OE

Reg_OF

Reg_10

Reg_11

Reg_12

Access

R/W

RIW

RwW

RIW

R/IO

R/O

R/O

R/O

R/O

R/O

RW

Defauit

OxD1

0x00

0xD9

0x00

0x00

Bit/Field

7.0

72

7:0

7:2

7.0

3.0

7.4

3:0

7:0

3:0

7:4

7.0

3:0

4:2

Register Name/Field Description

ADS5235 Digital Potentiometer 1 Low write data
Digital_Pot1[7:0]

ADS5235 Digital Potentiometer 1 High write data
Digital_Pot1[9:8]

Reserved

AD5235 Digital Potentiometer 2 Low write data
Digital_Pot2[7:0]

ADS5235 Digital Potentiometer 2 High write data
Digital_Pot2[9:8]

Reserved

AD7991 A/D ChO Low

ADC_Ch0[7:0]

AD7991 A/D ChO High

ADC_Ch0[11:8]

Reserved

AD7991 A/D Ch1 Low

ADC_Ch1[7:0]

AD7991 A/D Ch1 High

ADC_Ch1[11:8]

Reserved

AD7991 A/D Ch2 Low

ADC_Ch2(7:0]

AD7991 A/D Ch2 High

ADC_Ch2[11:8]

Reserved

Pattern Generator Control

1 = Pattern Generator Enable
0 = Pattern Generator Disable
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Table 5-2 Memory Space/Register Definitions

Address

0x13

0x14

0x15

0x16

ox17

0x18

0x19

Ox1A-OxFF

Name

Reg_13

Reg_14

Reg_15

Reg_16

Reg_17

Reg_18

Reg_19

Access

R/w

RW

R/wW

R/O

R/O

R/O

R/O

Default

0x03

Ox5A

0x04

Bit/Field

71

3.0

7:4

7.0

3:0

7.4

7.0

7:2

7:0

7:2

25

Register Name/Field Description

Reserved

Slave FIFO Control Register

The number of 16-bit words output to the USB processor following the falling edge

of FLAGB.

The number of words resultant = 1 + the value of this field.

Reserved

ADS627 DAC Low

DAC[7:0]

AD5627 DAC High

DAC[11:8]

Reserved

ADS5235 Digital Potentiometer 1 Low read data

Digital_Pot1_Read(7.0]

AD5235 Digital Potentiometer 1 High read data

Digital_Pot1_Read[9:8]

Reserved

AD5235 Digital Potentiometer 2 Low read data

Digital_Pot2_Read|7.0]

AD5235 Digital Potentiometer 2 High read data

Digital_Pot2_Read[9:8]

Reserved

Reserved



Table 5-3 Select Clock Divider Settings

Clock_Divider[8:0]

Decimal

511

500

200

100

67

50

40

37

38

33

29

25

22

20

Binary

IRRRRR R

111110100

011001000

001100100

001000011

000110010

000101000

000100101

000100110

000100001

000011101

000011001

000010110

000010100

000010010

000010001

000001111

0Odd/Even Clock Rate (KHz)

26

58.708

60.000

150,000

300.000

447,761

600.000

750.000

789.474

810.811

909,091

1034.483

1200.000

1363.636

1500.000

1666.667

1764.706

2000.000

Actual Pixel Rate (KHz)

7.339

7.500

18,750

37.500

55.970

75.000

93.750

98.684

101.351

113.636

120.310

150.000

170.455

187.500

208.333

220.588

250.000



Table 5-3 Select Clock Divider Settings =

Clock_Divider[8:0] 0Odd/Even Clock Rate (KHz) Actual Pixel Rate (KHz)
Decimal Binary
14 000001110 2142.857 267.857
13 000001101 2307.692 288.462
12 000001100 2500.000 312.500
11 000001011 2727.273 340.909
10 000001010 3000.000 375.000
8 000001000 3750.000 468.750
7 000000111 4285.714 535.714
1 000000001 30000.000 3750.000
Clock Divider

Odd/Even Clock rate is derived from 60MHz clock as follows:
Odd/Even Clock Rate = 60MHz + (2xClock_Divider)

The table above provides some examples of the clock divider settings. All values of Clock_Divider[8:0]
in the range from 1 to 511 are valid, resulting in the achievable pixel clock in the range from 7.339KHz
to 3.750MHz, and the corresponding Odd/Even Clock Rate in the range from 58.708KHz to 30.000MHz.
Note: Selecting a clock divider value outside of the valid range will result in the value being ignored. The
maximum operation frequency of the sensor is specified as 4MHz.
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Integration Time

Integration time is derived based on Odd/Even Clock Rate and the Integration_Time value as follows:
Actual Integration Time = Integration_Time + Odd/Even Clock Rate

Setting Integration_Time[31:0] to 0x00000008 with Clock_Divider[8:0] = 511,  results in integration time
being: 8 /58.708KHz = 136.266usec

Max Integration Time

Setting Integration_Time[31:0] to OxFFFFFFFF and Clock_Divider[8:0] = 1 results in integration time being:
(2%-1) / 30.000MHz = 143.166sec

Min Integration Time

Setting Integration_Time[31:0] to 0x00000001 and Clock_Divider[8:0] = 511, results in integration time
being: 1/58.708KHz = 136.267usec
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FPGA Design Description

The FPGA design is based on Intel (Altera) Cyclone Il device EP3C25F324C8. The FPGA design is written
in VHDL. The design consists of the major blocks listed in Table 6-1.

Table 6-1 List of the FPGA Modules =

# Module Name Source File Name Description

1 top top.vhd Top level of the design hierarchy

2 clock_reset_gen clock_reset_gen.vhd Clock and reset generator

3 control control.vhd 12C slave control interface

4 regs regs.vhd Control register bank

5 detector_con detector_con.vhd Sensor controller

6 adc_con adc_con.vhd Controller responsible for U1 (ADAQ7980BCCZ) control and for U4

(AD5235BRUZ25) digital potentiometer control via SPI bus on the ADI circuit card

7 slavefifo2b_streamin slavefifof2b_streamin.vhd Slave FIFO interface to EZ-USB device

8 adb5627_con ad_5627_con.vhd Controller responsible for temperature set-point DAC U9 (AD5627RBRMZ-1) on the
ADI circuit card

9 ad7991_con ad_7991_con.vhd Controller responsible for temperature monitoring ADC U10 (AD7991YRJZ-1500)
on the ADI circuit card

10 mpac mpac.vhd Multi-Port Access Controller (MPAC) provides shared access of ad_5627_con and
ad7991_con to the common 12C bus through 12C_master module

11 12C_master 12C_master.vhd Provides 12C bus master functionality needed to access 12C slave peripherals on
the ADI circuit card

12 adc_xf adc_xf.vhd Provides low-level control of the U1 (ADAQ7980BCCZ) ADC

13 ddr ddr.vhd Altera Megafunction IP providing DDR I/O functionality

14 12C_xf 12C_xf.vhd 12C Slave interface, used as a part of control madule

15 cbus_con cbus_con.vhd As a part of control module, this serves as read and write access bridge between

the 12C slave interface and the register bank module (regs)

16 tx_fifo tx_fifo.vhd This is a FIFO that receives its data from adc_con and makes it available to the
slavefifof2b_streamin module for transfer to the USB processor.

17 pll pll.vhd Altera Megafunction IP providing PLL functionality used within clock_reset_gen
module
18 N/A custom.vhd This serves as the design library. It contains package "custom" which captures

commonly used functions, constants and data types.
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The structure of the FPGA design is shown in Figure 6-1.

4 top 5th
884 sld_hub:auto_hub
4 E@ sld_signaltap:auto_signaltap 0
8bd sid_signaltap_impl:sid_signaltap_body
EE@ detector_con:U1
ﬁ adc_con:U2
ﬁ,@ adc_xf:AD7980_interface
'3% dock_reset_gen:U3
b ¥%, PLL:Phase_Lock_Loop
EEE User_Interface:U5S
?E i2c_master:U16
'ﬂ@ mpac:U17
EF':@ slaveFIFO2b_streamIM:U 18
b “%, ddriddr_inst
8bd TX_FIFO:U19
E@ Control:U20
Bbd 12C_XF:U1
ﬁ’,ﬁ@ cbus_con:U2
E@ regs:U21
#bd AD7991_con:U22
364 ADS627_con:U24

b

[ Y

Y

Figure 6-1: FPGA design structure
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6A. clock_reset_gen.vhd

Module Inputs and Outputs

Table 6-2 Module 1/0s

Port Name Type Direction Description

clk_in std_logic in 50 MHz clock input

reset_n std_logic in Active-low, asynchronous reset input

Clock_Divider std_logic_vector (8 down to in Controls the rate at which clk_en_1x and clk_en_2x are generated
0)

rst_n std_logic out Active-low, reset output, synchronously de-asserted, asynchronously asserted

clk std_logic out 60 MHz clock

clk_del std_logic out 60 MHz clock, synchronous to clk, O delayed

clk2x std_logic out 120 MHz clock, synchronous and aligned to clk

clk_en_1ms std_logic out Active-high, single clk cycle wide pulse, every 1 msec

clk_en_10ms std_logic out Active-high, single clk cycle wide pulse, every 10 msec

clk_en_100ms std_logic out Active-high, single clk cycle wide pulse, every 100 msec

clk_en_1x std_logic out Active-high, single clk cycle wide pulse, occurring at a rate of 60

MHz/(2xClock_Divider)

clk_en_2x std_logic out Active-high, single clk cycle wide pulse, occurring at a rate of 60
MHz/(1xClock_Divider)
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Module IP

Altera ALTPLL Megafunction: PLL, shown in Figure 6-2, generates 60MHz, 120MHz, and 60MHz clocks
based on 50MHz clock input.

PLL

inclk0 frequency: 50.000 MHz
reset Operation Mode: Normal

Clk | Ratiof Ph {(dg§ DC (%)

-
CyU
\-

= —— e
R ) OO0 BEN.00
- V. a VRV

000 B 00

)
VoW g VLW

0 |<
A

n

h r_‘; h

o BN mn
| > ] ¥ ) y )
LR -

n

Figure 6-2: Altera ALTPLL megafunction IP providing PLL functionality

Module Description
This module receives 50MHz clock from the Altera Cyclone-Ill Starter Board (DK-START-3C25N). The
received clock is provided to the PLL based on ALTPLL Megafunction IP provided by Altera. The resultant

clocks clk, clk_2x and clk_del are generated.

The module receives an asynchronous reset signal “reset_n” and creates asynchronously asserted,
synchronously to “clk” de-asserted, active-low reset output “rst_n”.

The module generates various clock enable outputs (programmable ones based on Clock_Divider: clk_
en_1x and clk_en_2x; fixed ones: at 1msec, at 10msec, at 100msec intervals).
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6B. control.vhd

Module Inputs and Outputs

Table 6-3 Module I/0s -

Port Name Type Direction Description
clk_sys std_logic in 60 MHz clock input
rst_n std_logic in Active-low, asynchronously reset, synchronously set reset input
CBUS_CON_Di std_logic_vector (7 down to in Read Data bus
0)
SCL std_logic in 12C clock
SDA std_logic in, out 12C data
CBUS_CON_A std_logic_vector (7 down to out Register address
0)
CBUS_CON_Do std_logic_vector (7 down to out Register write data
0)
CBUS_CON_WRS std_logic out Register write strobe, active-high
CBUS_Read std_logic out Register read strobe, active-high

Module Description

The module combines an 12C slave module (12C_xf) with cbus_con module allowing to perform a write or a
read access to a bank of registers connected external to control module. Refer to Figures 6-3 and 6-4.

During 12C write transfers the 12C_xf receives one byte at a time. A typical transfer consists of 2 payload
bytes: register address byte, followed by register data byte.

Each received data payload byte is presented at recv_data(7:0) output of the I2C_xf module, while being
accompanied by ser_load_en active-high single clock cycle pulse. This indicates to the CBUS controller
(cbus_con) that the data is to be stored.

first_byte output from 12C_xf indicates whether the data byte presented to cbus_con represents register
address or register data. If first_byte is asserted (active-high single clock cycle pulse) concurrently with

data_vld output of 12C_xf, then the data byte is register address, else the data byte is register data to be
stored at the respective address location.

During I12C read transfers the 12C_xf module transfers the data presented at xmit_dat(7:0) input onto the
12C bus.
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A typical register write transfer is shown in Figure 6-3.

-— Slave Address—m W - Data > - Data -

STA|1 [0 1[0 1|0 [ 1T]O|SA| X|X|X|X|X|X|X|X|SA|X|X|X|X|X|X]|X]|X|SA|STP

Figure 6-3: Typical I2C write transfer. STA = Start, SA = Slave ACK, STP = Stop, W = Write, X = any value (1 or 0)

The first data byte serves as register address, while the second data byte serves as register write data. A
typical register read transfer is shown in Figure 6-4.

-4— Slave Address —m W < Data [
0

stA’1/0(1/0{1/0]1]0|sA|0(0|0|0}|0|0|O0 SA

X | X | X |X|X|X]|X|[SA|STP

-——Slave Address—» R < Data
STAL1 |0 1/0| 1|01 [T [SA|X|X|X|X]|X|X]|X]|X |MNSTP

Figure 6-4: Typical I2C read transfer. MN = Master NACK, R = Read
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A read transaction consists of two separate transfers:

1) The first is a write transfer with first data byte having all zeros, and the second data byte used to indicate
the register address to be accessed for a subsequent read transfer.

2) The second is a read transfer with data byte returned by the slave_xf containing the data corresponding
to the register address presented during the first step.

SignalAssignments_1
SDA_in<=SDA;

SDA <='0’ when (SDA_out =0’ and SDA_oeN = '0') else 'Z"; —SDA
vi__12C Interface vz__CBUS Controller
clk_sysE> sh_ie L TN (g
rst_nE> me —tn .
1N S T soa 0w pr—sRR0UL__,
SCL ® et soa_oen [p—30ALCH
KSatTdm T e ser st id e
s ser_rece dola(7.0) S
T ser_load_en
R serome_dataiT:0)
2 oy ser_firsd_byte
a_er 20r, cbus,_wr
Her 'I_" ser_addr ingr
i2e_d
cous, A p———————-CBUS_Read
caus_was | - CBUS CON_WRS
8L A7 1) R CBUS_CON_A(7:0)
CBUS_CON_Di(T.0 cous_owre) COUS_ D07 ) e By CBUS._CON_Do(7:0)
cbus_con

Figure 6-5: Control module architecture
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6C. 12C_xf.vhd

Module Inputs and Outputs

Table 6-4 Module 1/0s

Port Name

clk_sys

rst_n

SDA_in

SDA_out

SDA_oeN

SCL

12C_A

data_vid

recv_dat

load_en

xmit_dat

first_byte

chus_dir

addr_incr

Type

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic_vector (7 down to

1)

std_logic

std_logic_vector (7 down to
0)

std_logic

std_logic_vector (7 down to

0)

std_logic

std_logic

std_logic

Direction

in

out

out

out

in

out

out

36

Description

60 MHz clock input

Active-low, asynchronously reset, synchronously set reset input

12C SDA input

|2C SDA output

|2C SDA output enable, active-low

|2C SCL input

|2C Slave address

Active-high, single clk_sys wide pulse, indicating that recv_data(7:0) is valid

Data payload byte received via 12C

Indicates that the data byte has been loaded into transmit register (used for read

transfers)

Data to be transmitted on 12C bus

Indicates the first data payload byte within an 12C write stream

CBUS direction transfer: 0 = Write, 1 = Read

Used during read transfers, this active-high signal produces a single clk_sys cycle

wide pulse each time a payload byte has been transferred via 12C interface.



— clk_sys

— rst_n

SDA_in SDA_out
—| scL SDA_oeN

= 12C_A(7:1)
data_wld
recv_data{7:0)
load_en
xmit_dat{7:0)
first_byte
cbus_dir

addr_incr

Figure 6-6: 12C module 1/0s
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Module Description

This module implements the physical access to the I12C bus. The module acts as an 12C slave with slave
address passed via 12C_A port. The module responds to 8-bit slave address of 0xAA/OxAB. The 12C
interface supports 12C clock rates of up to 400KHz.

The 12C module design is based on a finite state machine (FSM). The FSM is shown in Figure 6-7.

The FSM dwells in IDLE state until start is detected on the 12C bus. The FSM proceeds through A7_ST to
AO_ST states receiving one address bit at a time with each falling edge of SCL. Upon arriving to ADDR
state the received address is compared to the device address (0xAA/OxAB). If the upped 7 bits match, the
slave asserts acknowledge and proceeds to receive a data byte (states D7_ST through DO_ST). Each bit of
the data byte is received on the falling edge of the SCL line.

SCL_fedge represents a falling edge of 12C SCL clock received by the FPGA. All other conditional signals
are self-explanatory.

start detected and
[state /= IOl F) and

Figure 6-7: 12C state machine




6D. cbus_con.vhd

Module Inputs and Outputs

Table 6-5 Module 1/0s

Port Name Type

clk_sys std_logic

rst_n std_logic

ser_data_vld std_logic

ser_addr_incr std_logic

ser_first_byte std_logic

ser_cbus_wr std_logic

ser_recv_data std_logic_vector (7 down to
1)

ser_load_en std_logic

ser_xmit_data std_logic_vector (7 down to
0)

CBUS_Read std_logic

CBUS_WRS std_logic

CBUS_A std_logic_vector (7 down to
0)

CBUS_Do std_logic_vector (7 down to
0)

CBUS_Di std_logic_vector (7 down to
0)

Direction

out

out

out

out

out

Description

B0 MHz clock input

Active-low, asynchronously reset, synchronously set reset input

Single clock wide, active-high, signal indicating that a serial byte has been

received and it is ready to be stored

For multi-byte transfers (write or read), this single clock cycle wide, active-high

signal indicates that the next register address access should be started

Single clock wide, active-high, signal indicating that the byte being received is the
first byte, which represents CRDR address, while the second byte is the read
register address. This signal is used for read fransfers only.

Single clock wide, active-high, signal indicating a CBUS write transaction

A data byte received from the 12C interface

Active-high, single clk_sys wide pulse, indicating used in conjunction with

ser_addr_inc signal to cause an address on the CBUS fo be incremented

Data to be transmitted on the 12C bus

Active-high, single clk_sys wide pulse, used a read enable on the CBUS

Active-high, single clk_sys wide pulse, used a write enable on the CBUS

CBUS address

CBUS write data

CBUS read data
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Figure 6-8: CBUS_CON module 1/0s

¢K_gy5

t51_n

ser_data_vi
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B0 _COUS_WP
ser_addr_ber

CBUS_DIT:0)

CBUS_Read

CBUS_WRS
CHUS_A[F D)
CBUS_ Do)
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Module Description

cbus_con module receives raw bytes from the 12C_xf module and interprets them into register read and
write accesses. Once interpreted, the module produces address (CBUS_A), write data (CBUS_Do) and
write strobe (CBUS_WRS) signals to the downstream register bank for a write transaction; or (CBUS_A) and
read strobe (CBUS_Read) for a read transaction. The read data is CBUS_Di.

The module also transfers the read data back to 12C_xf module for a transfer back to 12C master via the
serial bus.

FSM trigger

Figure 6-9: CBUS_CON state machine
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6E. regs.vhd

Module Inputs and Outputs

Table 6-6 Module I/Os

Port Name Type Direction

clk_sys std_logic in

rst_n std_logic in

CBUS_Read std_logic in

CBUS_WRS std_logic in

CBUS_A std_logic_vector (7 down to in
0)

CBUS_Do std_logic_vector (7 down to in
0)

CBUS_Di std_logic_vector (7 down to out
0)

iIREG_0C std_logic_vector (7 down to in

through 0)

IREG_19

REG_00 std_logic_vector (7 down to out

through 0)

REG_2F

Description

60 MHz clock input

Active-low, asynchronously reset, synchronously set reset input
Active-high, single clk_sys wide pulse, used a read enable on the CBUS
Active-high, single clk_sys wide pulse, used a write enable on the CBUS

CBUS address

CBUS write data

CBUS read data

These represent inputs for the readable registers at addresses 0x0C through 0x19

These mirror the contents of the writable registers at addresses 0x00 through 0x2F

42



Figure 6-10: regs module I/Os
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REG_1CiT:a]
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REG_TCT:0]
REG_207:0]
REG_ZR(T:0]

ARG _2F(T4]

43




Module Description

regs module provides access to the contents of the registers at addresses 0x00 through Ox2F.

When a read transfer in the range from 0x0C to 0x19 is requested, the contents of iIREG_0C through
IREG_19 is used.

Read access to the address range 0x0C to 0x11 is mapped to AD7991 ADC channel 0 through 2.

REG_00 to REG_2F provide control over the various functions of the FPGA.
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6F. detector_con.vhd

Module Inputs and Outputs

Table 6-7 Module I/0s

Port Name

clk_sys

rst_n

clk_en_2x

clk_en_1x

op_en

Integration_Time

reset_odd

clk_odd

adtrig_odd

reset_even

clk_even

adtrig_even

adtrig_odd_test

adtrig_even_test

pix_mode

hs_mode

par_mode

Type

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic_vector (31 down to

0)

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

Direction

in

out

out

out

out

out

out
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Description

60 MHz clock input

Active-low, asynchronously reset, synchronously set reset input
Active-high, clock enable at a rate equal to

60 MHz/Clock_Divider

(refer to Table 6-2)

The default value of Clock_Divider is 10,

resulting in 8 MHz rate of clk_en_2x

Active-high, clock enable at a rate equal to

60 MHz/(2 x Clock_Divider)

(refer to Table 6-2)

The default value of Clock_Divider is 10, resulting in
3 MHz rate of clk_en_1x

Active-high signal, when set enable the operation of the sensor contreller
This input controls the integration time in units of

80 MHz/(2 x Clock_Divider)

The default value is 0x00000338, resulting in 275 psec default integration time.
Odd reset output to the image sensor

Odd clock output to the image sensor

ADC odd pixel trigger input from the image sensor
Even reset output to the image sensor

Ewven clock output to the image sensor

ADC even pixel trigger input from the image sensor
Test output. Emulates the corresponding trigger input.
Test output. Emulates the corresponding trigger input.
Pixel mode:

0 = 256 pixel mode (default)

1 =512 pixel mode

Sensor interface speed:

0 = Regular speed mode (default)

1 = High speed mode

Parallel mode:

0 = Sequential op mode (default)

1 = Parallel op mode (odd and even pixels are clocked concurrently and slower)



Table 6-7 Module I/0s

Port Name

mMux_con_iny

even_odd_n

syNe

adc_frigger

last_xfer

integr_start

integr_end

Type

std_logic

std_logic

std_logic_vector (1 down to
0)

std_logic

std_logic

std_logic

std_logic

Direction

out

out

out

aut

out

out
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Description

Pixel multiplexar control:
1 = Invert even_odd_n
0 = Do not invert (default)

Multiplexor control:
0 = Odd data select

1 = Even data select

This signal is used to indicate to Slave FIFQ interface the beginning of the
integration phase of sensor control

"01": Integration started

"10": Integration started 1 cycle ago

"00": Integration not started

"11": Reserved/Invalid

Test output for ADC controller (emulates that of the image sensar)

Active-high, single clk wide signal:

1: Marks the moment when the last pixel burst is starting

Active-high, single clk wide signal:

1: Marks the beginning of the integration interval

Active-high, single clk wide signal:

1: Marks the end of the integration interval



Even
adtrig_even reset_even |[—
clk_even |—
Odd
adtrig_odd reset_odd
clk_odd |—
par_mode
pix_mode
hs_mode
mux_con_inv even_odd_n |—
clk adtng_odd_test |—
rst_n adtrig_even_test | —
clk_en_2x sync(1:0 )=
clk_en_1x adc_trigger |—
op_en integr_start|—
Integration_Time(31:0) integr_end|—
last_xfer]—

Figure 6-11: detector_con module 1/Os
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Module Description
The detector controller module provides the logic and timing for the control signals needed to properly
control a detector device under test.
The controller supports the following operating modes:
» 256 or 512 pixels
* Regular or High-speed operation
* Normal (Sequential) or Parallel operating mode

Figure 6-12 through Figure 6-28 demonstrate the relationship between the detector control signals in all
possible operating modes.
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i 3 —] 1 | 1 | 1 I I | | 1 | 1 f 1 I ==
® reset_odd gx 4 20—
23R3uE
o adlig_odd 0 ’—l '|—
o clk_even 1}
= adirg_even 0
o jepel_even 0
® even_odd_n 1}

Figure 6-12: 256-pixel, regular speed, sequential mode timing
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Figure 6-13: 256-pixel, regular speed, sequential mode operation
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Figure 6-14: 256-pixel, regular speed, sequential mode operation around reset
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Figure 6-15: 512-pixel, regular speed, sequential mode operation around reset
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Figure 6-16: 512-pixel, regular speed, sequential mode operation overview
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Figure 6-17: 256-pixel, high speed, sequential mode operation around reset
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Figure 6-18: 256-pixel, high speed, sequential mode operation overview
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Figure 6-19: 512-pixel, high speed, sequential mode operation around reset
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Figure 6-21: 256-pixel, regular speed, parallel mode operation around reset
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Figure 6-22: 256-pixel, regular speed, parallel mode operation overview
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Figure 6-23: 512-pixel, regular speed, parallel mode operation around reset
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Figure 6-24: 512-pixel, regular speed, parallel mode operation overview
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Figure 6-25: 256-pixel, high speed, parallel mode operation around reset
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Figure 6-26:

2 Irkeguation_Time:

[ & Clock,_Divider

= pai_mode

o pix_mode

 ha_moce

& clk_en_2x

= clk_en_1x

® cli_odd

= ieel_odd

& adiig_odd

*® clk_even

& adlig_even

® (el aven

® even_odd n

Figure 6-27:
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Figure 6-28:

512-pixel, high speed, parallel mode operation overview
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The detector controller module design is based on an FSM (Finite State Machine) shown in Figure 6-29.

Figure 6-29: Detector controller state machine
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6G. adc_con.vhd

Module Inputs and Outputs

Table 6-8 Module 1/0s

Port Name

clk

clk_del

clk_2x

rst_n

clk_en

mosi

miso

sclk

adc_conv

digipot_cs_n

digipot_rdy

digipot1_wr

digipot2_wr

RDACH

RDAC2

RDAC1_rd_data

RDACZ2_rd_data

Pa_en

last_xfer

integr_end

integr_start

adc_data

data_rdy

adc_trigger

Type

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic_vector(9:0)

std_logic_vector(9:0)

std_logic_vector(9:0)

std_logic_vector(9:0)

std_logic

std_logic

std_logic

std_logic

std_logic_vector(15:0)

std_logic

std_logic

Direction

out

out

out

out

out

out

out

out
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Description

60 MHz clock input

60 MHz clock input

60 MHz clock phase shifted by 0 deg from clk

Active-low, asynchronously reset, synchronously set reset input

100 msec clock enable, active-high, 1 clk long

SPI data output (Master Out Slave In)

SPI data input (Master In Slave Out)

SPI clock output

ADAQTI80 CNV signal, active-high

Digital potentiometer AD5235 Chip Select, active-low

Digital potentiometer AD5235 read data ready, active-high, 1 clk wide

AD5235 digital potentiometer 1 write command, active-high, 1 clk wide

AD5235 digital potentiometer 2 write command, active-high, 1 clk wide

AD5235 digital potentiometer 1 write data

AD5235 digital potentiometer 2 write data

AD5235 digital potentiometer 1 read data

AD5235 digital potentiometer 2 read data

Pattern Generator Enable, active-high

Last Transfer indicator, active-high

Integration End indicator, active-high, 1 clk wide

Integration Start indicator, active-high, 1 clk wide

ADAQTIE0 data output

ADAQTIE0 data ready, active-high, 1 clk wide

Trigger for ADAQ7980 ADC conversion, active-high, 1 clk wide



+ miso mosi|—+

sclk +
+clk_del adc_conv +
+digipot_rdy digipot_cs_n —r
+ clk last_xfer —i
»—{ Gl integr_end —i
+ rst_n integr_start —4
+clk_en adc_data(15:0) —Ir
- digipot1_wr data_rdy +
+— digipot2_wr adc_trigger —4
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Figure 6-30: adc_con module I/Os

Module Description

adc_con module serves as an interface between the FPGA and the two Analog Devices ICs sharing the
same SPI bus: ADAQ7980 (ADC) and AD5235 (Dual Digital Potentiometer). adc_con module includes
adc_xf module, which implements the interface logic, while adc_con serves the functions of a wrapper
and contains some glue logic. As the SPI interface is shared, the design of the adc_xf includes an arbiter,
allowing access to both physical devices using the shared interface.
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6H. adc_xf.vhd

Module Inputs and Outputs

Table 6-9 Module I/0s

Port Name

clk

clk_del

clk_2x

rst_n

clk_en

masi

miso

sclk

adc_cnv

digipot_cs_n

digipot_rdy

digipot1_wr

digipot2_wr

RDACH

RDAC2

RDAC1_rd_data

RDAC2_rd_data

po_en

last_xfer

integr_end

integr_start

data

ready

adc_trigger

Type

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic_vector(9:0)

std_logic_vector(9:0)

std_logic_vector(9:0)

std_logic_vector(9:0)

std_logic

std_logic

std_logic

std_logic

std_logic_vector(15:0)

std_logic

std_logic

Direction

out

out

out

out

out

out

out

out
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Description

60 MHz clock input

60 MHz clock input

60 MHz clock phase shifted by O deg from clk

Active-low, asynchronously reset, synchronously set reset input

100 msec clock enable, active-high, 1 clk long

SPI data output (Master Out Slave In)

SPI data input (Master In Slave Out)

SPI clock output

ADAQTI80 CNV signal, active-high

Digital potentiometer AD5235 Chip Select, active-low

Digital potentiometer AD5235 read data ready, active-high, 1 clk wide

AD5235 digital potentiometer 1 write command, active-high, 1 clk wide

ADB235 digital potentiometer 2 write command, active-high, 1 clk wide

AD5235 digital potentiometer 1 write data

AD5235 digital potentiometer 2 write data

ADB235 digital potentiometer 1 read data

AD5235 digital potentiometer 2 read data

Pattern Generator Enable, active-high

Last Transfer indicator, active-high

Integration End indicator, active-high, 1 clk wide

Integration Start indicator, active-high, 1 clk wide

ADAQT980 data output

ADAQT980 data ready, active-high, 1 clk wide

Trigger for ADAQ7980 ADC conversion, active-high, 1 clk wide



Module Description

adc_xf module serves as an interface between the FPGA and the two Analog Devices ICs sharing the
same SPI bus: ADAQ7980 (ADC) and AD5235 (Dual Digital Potentiometer). adc_xf module implements the
interface logic based on state machines. As the SPI interface is shared, the design of the adc_xf includes
an arbiter, allowing access to both physical devices using the shared interface. The arbitration is based on
the fact control coming from the detector_con module.

During the time when odd/even clocks and strobes are actively generated and odd/even trigger inputs are
output by the sensor (adtrig_odd/ad_trig_even) the adc_xf communicates with ADAQ7980 to acquire the
corresponding pixel data. During the reset intervals, when the sensor is performing integration, adc_xf
allows the Read and Write accesses to the digital potentiometer AD5235. The accesses to the digital
potentiometer are suspended while the accesses to ADC continue following the integration interval.

The ADC state machine is shown in Figure 6-31. The FSM idles in ADC_IDLE_ST state waiting for the

next rising edge of adc trigger from the sensor. adc_tcnv_cnt is initialized to 60; hence the state machine
waits in ADC_CNV_ST until the conversion is finished. The wait time is 60 x 60MHz periods, or 1000nsec.
ADAQ7980 device conversion time ranges from 500 to 710nsec. With 1000nsec conversion time allowance,
the design provides for an ample margin.

ade frigner redge

sclk_clk _cnt = \00001"

Figure 6-31: ADC state machine
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The interface to ADC consists of the SPI (with MOSI and Chip-Select not connected) and CNV signal (adc_
cnv). During ADC_RD_SNV_RESULT state the 16-bit ADC data is serially captured, while the adc_xf pulses
SPI clock SCLK.

The digital potentiometer state machine is shown in Figure 6-32.

(4'.1

Figure 6-32: Digital potentiometer state machine

The digital potentiometer read and write requests are received via 12C and result in the corresponding
trigger requests being generated. In response to the trigger requests, while the detector controller is in the
reset (integration) phase, the accesses to the digital potentiometer are performed.
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6l. AD7991_con.vhd

Module Inputs and Outputs

Table 6-10 Module 1/0s

Port Name Type

clk_sys std_logic

rst_n std_logic

clk_en std_logic

xfer_ack_n std_logic

rd_data array (0 to 15) of
std_logic_vector (7 down to
0)

error std_logic

xfer_req n std_logic

xfer_rw std_logic

xfer_size natural

xfer_addr std_logic_vector (7 down to
1)

wr_data array (0 to 15) of
std_logic_vector (7 down to
0)

skip_wr std_logic

ADC_CHO std_logic_vector (11 down to
0)

ADC_CHA std_logic_vector (11 down to
0)

ADC_CH2 std_logic_vector (11 down to
0)

Direction

out

out

out

out

out

out

out

out

out
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Description

60 MHz clock input

Active-low, asynchronously reset, synchronously set reset input

100 msec clk enable, 1 clk wide, active-high

Transfer acknowledge, 1 clk wide, active-low

Data returned by the AD7991 device

Error indicater, returned by the MPAC

Transfer request, 1 clk wide, active-low

Transfer type select, 0 = Write, 1 = Read

Indicates the number of payload bytes to be transferred

Indicates the 12C slave address to be accessed
In the case of AD7991, this is set to "0101001°

Payload data to be written out to the slave device

Setting this to 1 results in 12C read access performed without write access being

done first.

Data read from Channel 1 of the ADC

Data read from Channel 2 of the ADC

Data read from Channel 3 of the ADC



— clk xfer_req_n
— rst_n xfer_ack_n
— clk_en xfer_rw
xfer_addr(7:1)
xfer_size
wr_data
rd_data

error
skip_wr

ADC_CHO(11:0)
ADC_CH1(11:0)
ADC_CH2(11:0)

Figure 6-33: AD7991_con module 1/Os
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Module Description

AD7991_con module is responsible for high-level control of the AD7991 12C ADC. The system contains 2
I2C devices: AD7991 12-bit ADC and AD5627 12-bit DAC. Both devices share the same 12C bus. To allow
for the FPGA to access both devices the design includes a Multi-Port Access Controller (MPAC), connected
to 12C Master at one side and to the two 12C controllers (AD7991_con and AD5627_con) on the other side.

AD7991_con controls the high-level 12C commands and data issued to and received from the DAC. The
control is based on a state machine shown in Figure 6-34.

A\

)
: trigger

xfer_ack_n_redge xfer_ack_n_redge

Figure 6-34: AD7991_con state machine
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During the initialization phases of the state machine (INIT_SETUP_ST through INIT_DONE_ST), the
AD7991 is initialized by performing the following transactions:

Write 00111000 to enable reading ChO and Ch1, Select External REF, Enable 12C filtering, Enable bit try
and Sample Delay.

Upon completion of the initialization the controller is ready to access the ADC. The ADC read requests are
performed via slave 12C interface, when the external USB controller accesses the respective FPGA slave

registers. In response, the controller state machine traverses states ADC_RD_SETUP_ST through ADC_
RD_DONE_ST and reads the three available analog channels.

6J. AD5627 con.vhd

Module Inputs and Outputs

Table 6-11 Module I/0s =

Port Name Type Direction Description
clk_sys std_logic in 60 MHz clock input
rst_n std_logic in Active-low, asynchronously reset, synchronously set reset input
clk_en std_logic in 100 msec clk enable, 1 clk wide, active-high
DAC std_logic_vector(11:0) in Data to be written to DAC
DAC_update std_logic in Trigger, active-high, 1 clk wide resulting in data being sent to the DAC
xfer_reqg_n std_logic out Transfer request, 1 clk wide, active-low
xfer_ack_n std_logic in Transfer acknowledge, 1 clk wide, active-low
xfer_rw std_logic out Transfer type select, 0 = Write, 1 = Read
xfer_addr std_logic_vector (7 down to out Indicates the 12C slave address to be accessed
1) In the case of AD5627, this is set to "0001110"
xfer_size natural out Indicates the number of payload bytes to be transferred
wr_data array (0 to 158) of out Payload data to be written out to the slave device

std_logic_vector (7 down to
0)

rd_data array (0 to 15) of out Data read out from the slave device

std_logic_vector (7 down to

0}
error std_logic in Error indicator, returned by the MPAC
skip_wr std_logic out Setting this to 1 results in 12C read access performed without write access being

done first.
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— clk
—1 rst_n
— clk_en

— DAC(11:0)
—{DAC_update

xfer_req_n
xfer_ack n
xfer_rw
xfer_addr(7:1)
xfer_size
wr_data
rd_data

error

skip_wr

Figure 6-35: AD5627_con module 1/Os
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Module Description

AD5627_con module is responsible for the initialization and high-level control, including data reads and
writes of the AD5627 12C DAC. All accesses to the physical DAC are performed via 12C bus, using 12C
master and a Multi-Port Access Controller (MPAC). The accesses to AD5627 are shared with 12C transfers
performed in the course of accesses to AD7991, and therefore are arbitrated by the MPAC. The controller
is based on a state machine shown in Figure 6-36.

OG

it =fep /= LA

il

Figure 6-36: AD5627_con state machine
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AD5627 initialization consists of 4 steps:

O T QO -

O T O DN

3.
a.

. LDAC Setup:

. Data Byte 1 = “00110000” (Command = “110”)

. Data Byte 2 = “00000000” (Don’'t Care)

. Data Byte 3 = “00000001” (DAC B LDAC pin enabled, DAC A LDAC pin disabled)

. Reference Setup:

. Data Byte 1 = “00111000” (Command = “111”)

. Data Byte 2 = “00000000” (Don’t Care)

. Data Byte 3 = “00000001” (Internal Reference ON)

Load Input Shift Register:
Data Byte 1 = “01011000” (Byte Selection (S) = 1, Command = “011” (Write to and Update DAC Channel

n), DAC Address = “000” (DAC A))

b.
C.

4.
a.
b.
C.

Data Byte 2 = DAC(11:4)
Data Byte 3 = DAC(3:0) & “0000”

Power-up:

Data Byte 1 = “00100000” (Command = Power-up)

Data Byte 2 = “00000000” (Don’t Care)

Data Byte 3 = “00000001” (Normal Operation (5:4) = “00”, Select DAC A (bit 0 = ‘1"))

For all subsequent accesses DAC write is performed whenever a trigger is received. Upon a trigger, which is
an 12C slave write to the FPGA from the USB sub-system, the state machine sends the 12-bit DAC input to
AD5627 device.

66



6K. mpac.vhd

Module Inputs and Outputs

Table 6-12 Module 1/0s

Port Name

clk_sys

rst_n

xfer_req n

xfer_rw

xfer_addr

wr_data

xfer_size

skip_wr

xfer_ack_n

rd_data

errar

12C_xfer_req_n

12C_addr

12C_rw

12C_xfer_size

12C_wr_data

12C_rd_data

12C_rd_vid

12C_busy

12C_error

12C _skip_wr

Type

std_logic

std_logic

std logic_vector(7:0)

std_logic_vector(7:0)

array (7:0) of std_logic (7:0)

array (7:0) of array (15:0) of
std_logic (7:0)

array (7:0) of natural

std_logic_vector(7:0)

std_logic_vector(7:0)

array (15:0) of std_logic (7:0)

std_logic_vector(7:0)

std_logic

std_logic_vector(7:1)

std logic

natural

array (15:0) of std_logic (7:0)

array (15:0) of std_logic (7:0)

std_logic

std_logic

std_logic

std_logic

Direction

out
out
out
out

out

out
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Description

60 MHz clock input

Active-low, asynchronously reset, synchronously set reset input

Active-low transfer request. The request bit is asserted until a corresponding

acknowledgement response xfer_ack_n bitis received.

Transfer direction: Read = 1, Write = 0

12C slave address, one for each corresponding port number

12C payload, 16x8 array for each port

Transfer size (number of payload bytes). one value for each respective port

If write is not needed before reads take place, this bit indicates that when set. One

bit for each of the 8 ports.

Transfer acknowledge, active-low, 1 clk wide. Indicates that the requested transfer

has been completed.

Data read from the [2C slave device

Error indication, one for each port

Qutput to the 12C master, active-low, 1 clk wide, requesting a data transfer

Address of the 12C slave device to be accessed

Transfer direction: 0 = Write, 1 = Read

Number of payload bytes to be transferred

Payload bytes to be transferred

Data read as a result of the 12C read transfer

Active-high, 1 clk wide, indicates that 12C data read is valid

Indication from the 12C master that a transfer is in progress, active-high

12C transfer error indication

If write is not needed before reads take place, this bit indicates that when set.



clk

rst n

xfer_req_n(7:0)
xfer_ack_n(7:0)
xfer_rw(7:0)
xfer_addr
xfer_size
wr_clata
rd_data
skip wr(7:0)
error(7:0)

I2c_xfer req_n
i2c_xfer_size
i2¢c_addr(7:1)

i2c_rw
i2c_wr_data
iZc_rd_data
i2e_rd wld
i2c_busy

i2c_error
i2c_skip_wr

Figure 6-37: MPAC module 1/Os
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Module Description

The Multi-Port Access Controller links the high-level controllers needing to perform high-level 12C transfers
with a single 12C Master controller available on the FPGA. AD7991_con and AD5627_con controllers utilize
2 of the 8 available ports on the MPAC. The MPAC performs round-robin access arbitration between all

8 ports. In reality, since only 2 ports are utilized the available bandwidth is split ~50/50 between the two
controllers.

The MPAC design is based on 2 state machines: one state machine is used for round-robin access
arbitration, while the second state machine is used for control of the interface with the 12C master module
12C_master.

The arbitration state machine is shown in Figure 6-38. A request is checked one at a time. If a request is
asserted, the corresponding port is allowed access to the 12C Master interface via the 12C Master Interface
state machine shown in Figure 6-39.

A

Figure 6-38: MPAC arbitration state machine

busy_fedge fi2c_busy

Figure 6-39: MPAC 12C master interface state machine
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6L. 12C_master.vhd

Module Inputs and Outputs

Table 6-13 Module I/0s

Port Name Type Direction Description
clk std_logic in 60 MHz clock input
rst_n std_logic in Active-low, asynchronously reset, synchronously set reset input
xfer_reg_n std_logic in Active-low, 1 clk wide, request to perform a transfer
xfer_size natural range 1 to 16 in Payload size in number of bytes
addr std_logic_vector(7:1) in Address of the slave device o be accessed
nw std_logic in Read/write indication: 0 = Write, 1 = Read
data_wr_arr array (0 to 15) of in Array containing the payload data
std_logic_vector(7 down to 0)
skip_wr std_logic in Set to 1 when a read transfer does not need to be preceded by a write
scl std_logic in, out 12C Clock
sda std_logic in, out 12C Data
busy std_logic out 1 =12C Master is busy
0 = 12C Master is ready for the next transfer request
ack_error std_logic out 1 = Indicates slave did not acknowledge the transfer
data_rd_vld std_logic out 1 = Indicates that the data_rd_arr contains the data
data rd_arr array (0 to 15) of out Data returned during a read transfer
std_logic_vector (7 down to
0)
—clk scl|—
—{reset_n sda [~
—]xfer_req_n
—| xfer_size busy [—
—addr(7:1) ack_error[—
—{rw data_rd_vid [—
—|data_wr_arr  data_rd_arr|—
—{ skip_wr

Figure 6-40: 12C master module I/Os
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Module Description

This module interfaces to MPAC module and provides for master access to the 12C bus. The two slave
devices accessed by the master are AD7991 and AD5627. The module design is based on a state machine

shown in Figure 6-41.

S

transfer /= WRITE XFER

Figure 6-41: 12C master state machine
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6M. tx_fifo.vhd

Module Inputs and Outputs

Table 6-14 Module 1/0s

Port Name

clk

rst_n

din

wr_en

sync

dout

rd_en

rd_vid

empty

full

flag

data_cnt

Type

std_logic

std_logic

std_logic_vector(15:0)

std_logic

std_logic_vector(1:0)

std_logic_vector(15:0)

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

Direction

out

out

out

out

out

out

Description

60 MHz clock input

Active-low, asynchronously reset, synchronously set reset input

16-hit pixel data from the A/D converter, FIFO data input

FIFO write enable, active-high

"01" indicates the beginning of the reset state (integration start)

FIFO data output

FIFO read enable, active-high

FIFO read data valid, active-high

FIFO empty indication
1 =FIFQO is empty

FIFO full indication
1=FIFQ is full

FIFO data ready flag
1 = Data is ready for reading from FIFO

FIFO fullness count: indicates the number of 16-bit words available for reading

din(FIFO_BPA&TA_BITS-1:0) dout(FIFO_DATA_BITS-1:0)|—

wr_en
sync(1:0)

rd_en

clk
rst_n

flag—
rd_vid |—
full |—
empty —

data_cnt(FIFO_ADDR_BITS:0)[—

Figure 6-42: tx_fifo module I/Os
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Module Description

This module serves the purpose of storing the data received from the image sensor prior to having that data
transferred to the USB microprocessor via slavefifo2b_streamin module. The FIFO size is 256 words deep,
with each word being 16-bits wide.

6N. slavefifo2b streamin.vhd

Module Inputs and Outputs

Table 6-15 Module I/0s =

Port Name Type Direction Description

clk std_logic in 60 MHz clock input

rst_n std_logic in Active-low, asynchronously reset, synchronously set reset input
op_en std_logic in Operation Enable

Connected to REGO1 bit 6

1 = Operation enabled

tx_data std_logic_vector(15:0) in Qutput of tx_fifo

clk_out std_logic out Clock output, 80 MHz

fdata std_logic_vector(15:0) in, out Slave interface data bus, bi-directional

faddr std_logic_vector(1:0) out Slave FIFO address output, fixed at '00'

slcs_n std_logic out Slave chip select, fixed at '0’

slrd_n std_logic out Slave interface read enable, active-low

sloe_n std_logic out Slave output enable, fixed at '1'

slwr_n std_logic out Slave interface write enable, active-low

flaga std_logic in Current Thread DMA Ready (active-high)

flagb std_logic in Partial flag, DMA watermark value {active-high)
pktend_n std_logic out Slave packet end, fixed at '1'

wr_end_wd_cnt std_logic_vector(3:0) in Connected to REG13 bits (3:0)

fifo_rd_en std_logic out Output to tx_fifo, read enable, active-high
fifo_data_rdy std_logic in QOutput from tx_fifo (flag). Indicates that FIFO data is ready.
test std_logic out For test purposes, not used

state_decode std_logic_vector(2:0) out For test purposes, connected to the on-board LEDs
test_trig std_logic out For test purposes, not used
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clk flaga
rst_n flagh |—
Hop_en test_trigi—

! state_decode(2.0)—
—{tx_data(15.0)

— fifo_data_rdy clk_out

;— fifo rd_en faddr(1:0) .
fdata(15:0) ._
f pktend_n
:f slcs_n|-

sloa_n
slrd_n

- wr_end wd_cnt{3:0) slwr_n

test—

Figure 6-43: slavefifo2b_streamin module 1/Os
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Module Description

This module implements Synchronous Slave FIFO Interface in accordance with Cypress CYUSB301X
datasheet. The synchronous slave FIFO interface is used for transferring pixel data to the USB
microprocessor and onto the PC. The slave FIFO interface is based on Cypress Application Note AN65974.
The interface design from the application note has been revised and further elaborated and modified for this
present application. The implementation is centered on the state machine shown in Figure 6-44.

op en AND
flaga req AND

flagh req AND
fifo_data rd

op en AND
flaga req AND
fMagb req AND

op en AND
flaga req AND
fMagb req AND
ffifo_data rdy

=5 e AT

flagh req AND
fifo_data rdy

op_en AND
flaga req AND

flagh req AND
remaining wr cnt <=1

ffifo_data_rdy

Figure 6-44: Slave FIFO interface state machine
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USB Sub-System

The USB interface sub-system is based upon Cypress EZ-USB FX3 development kit. At the heart of the
Cypress platform is USB microprocessor CYUSB301X supporting USB3.0 interface.

The USB microprocessor design is based on Cypress Synchronous Slave FIFO. SlaveFIFOSync project is
provided as a part of this system. The project is comprised of the following files:

1. cyfx_gcc_startup.S:
Start-up code for the ARM-9 core on the FX3 device. This assembly source file follows the syntax for the
GNU assembler.

2. cyfxslfifosync.h:
C header file that defines constants used by this example implementation. Can be modified to select USB
connection speed, endpoint numbers and properties, etc.

3. cyfxsilfifousbdscr.c:
C source file that contains USB descriptors used by this example. VID and PID are defined in this file.

4. cyfxgpif_syncsf.h:
C header file that contains the data required to configure the GPIF interface to implement the Sync Slave
FIFO protocol.

5. cyfxtx.c:
C source file that provides ThreadX RTOS wrapper functions and other utilities required by the FX3 firmware
library.

6. cyfxsilfifosync.c:
Main C source file.

7. makefile:
GNU make compliant build script for compiling this project.

This project configures and uses the GPIF Il interface on the FX3 device in synchronous slave FIFO mode.
The FPGA acts as a master device that implements the Cypress-defined Sync Slave FIFO.

This project implements the following functions:
1. Configuration of the GPIF Il interface to implement the Sync Slave FIFO protocol.
2. Enumeration as a vendor specific USB device with two bulk endpoints (1-OUT and 1-IN).
3. Creation of MANUAL DMA channels to enable the following data paths:
a. All data received from the USB host through the 1-OUT endpoint is forwarded to the master device on
the slave port through socket 3.
b. All data received from the master device on the slave port through socket 0 is forwarded to the USB
host through the 1-IN endpoint.
4. When any data packet is received through one of the ingress sockets, the application is notified and
forwards the data to the recipient through a DMA callback function.
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The output of the compilation is SlaveFifoSync.img, which is loaded into the Cypress EZ-USB board using
USB Control Center Application, part of EZ-USB FX3 SDK Software tools.

To load the file into the target perform the following steps (1-5):
1) Connect EZ-USB FX3 board to the PC.
2) Once the drivers for the USB device are installed, the screen shown in Figure 7-1 will be seen.

File FProgram Help

I B AR URE Stat Abort Pipe ResetPipe ¥ & @ &
[Pl Cyprees F203 LISE EioolLoider Danvicn Dserigtns bdn Mrmlmmmsmﬂ _
<DEVICE> -

FriendiyName«"Cypress RO USE BootLoader Device™
Marfachrers T

Comfigrations
Wl Pasctont Size g™
WendodD="04 B4
ProdycliD="00 F3"
Oassa™ IR
Subllass"00"
Prolecel="00"
BodDewices"01 00"
BedUSE="02 00 L
CONFGURATION
Configuations"{"
Wl s™ "
Arbetes"HH"
e aoes="1"
Descrptor Types "2
DescripborLengthe ™3 |
i TolalLength="12"
ManPorarera™ 100"
<INTERFACE:
rhedpsan
plishoaictaild
ClaszeFFh™
! Subcims="00h"~
Proboool ="
Ersdpointss™0™
Drescriptoe Typam ™4~

“g-
AHTERFACE>

Figure 7-1: USB control center initial screen
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3) Select the device (Cypress FX3 USB BootLoader Device), then click on Program -> FX3 -> RAM (refer to
Figure 7-2).

" USB Controd Center =

Program
F gl ] B2 URE St Abort Pipe ResetPpe X & @ 7
- G e RAM o | Data Transien. | Device Class Selecton |

1L EEPROM .
5P FLASH FrienclyMame«"Cypress F3 USE Boctloader Device™

by =

Figure 7-2: Program FX3 device
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4) Navigate to the location of “SlaveFifoSync.img” and select “Open.”
5) The new driver will be loaded by the operating system, resulting in the following screen shown in
Figure 7-3.

" USB Control Center -
(W E B Rd@E URE Stat  AbortPrpe ResetPipe X & O &
[ e e || Dwscrptor ifo | [iata Tranalers | Device Ciass Sehection |

DEVICE> "

Frimnchy Marres Cppress O UISE Streamer Eoampls Devwos™
Msrdachrers Typesss ™

;
g

BedUtSE="02 10"
AOONFGLRATION:
Configumtian-"0"

Configurationvalue="1"
LT
nbsdnoss="1"

Prograeng Sucteeded i

s

Figure 7-3: FX3 device has been programmed

Now, the USB development board is ready to perform data transfers.

Notes:

1) The firmware has been loaded into RAM; hence should the power to the board be turned off (or USB
cable unplugged from the PC), the programming steps would have to be repeated.

2) It is important to use a high quality USB 3.0 cable and a corresponding USB 3.0 port on the PC.
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PC Software and IGAA Driver Library Section

The PC software uses the IGAA Driver Library for control, monitoring and data acquisition based on the

development system described herein. Please refer to “Hamamatsu Driver Circuit for Image Sensor Control
Library” document for the detailed information on the available functions.

80



Test Results

9A. Timing Operations and Analog /O Signals

This is the timing diagram of the G9201~8 and G9211~4 sensors. The integration time is set by the Reset
input pulse width. Each pixel is being read out every 8 clocks.

ce, WL TN, VIO, - A
- T ™

Figure 9-1: The G920x sensor timing diagram
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In the software interface, the pixel format, readout mode, integration time, temperature, bias voltages, and
the number of line data to be written can be defined.

Image 1 2 4 8 16 32 &4 128 2%
Brightness: @ O O O O O O © O

Pixel Mode  Interface Speed and Style Mux Control
() 256 pixel (@) Mormal Speed (@) Sequential (@) Normal
(@ 512 pixel (O HighSpeed () Parallel () Inverted

Gain Receive to File

@) Low Mumber of Image Lines: 50

(O High Progress: | MotStarted | | Start Writing |
 LoadFul Status

Pixel Clock Divider: 10 | Set || Get |
Integration Time: 325—| Set || Get |
Digital Potentiometer 1: | 209 | Set || Get |
Digital Potentiometer 2: 217 | [ set || Get |
AtoD Channel 0: 0 | Auto | | Get |
Temperature (C): Auto Update Off
AtoD Channel 1: 0 [ Get |
AtoD Channel 2: 0 | Get |
D to A Converter: 90 | Set || Get |
Rendering Time (ms): 200

(@auto size  ()256pixel () 512 pixel

Figure 9-2: Parameter setting in the software interface
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Pixel Number Select: 256 or 512.

For a 512-pixel array, there are two video output ports on the sensor chip: even and odd. Three readout
modes are designed to read out from the sensor depending on the different multiplexer timing:

Multiplexer Timing (1) — Even/Odd simultaneous (parallel)

Multiplexer Timing (1a) — Non-Return to Zero (stagger)

Multiplexer Timing (2) — Clock burst with return to zero between pixel reads (bursts) — the same as C8062,
the standard InGaAs multichannel detector head offered by Hamamatsu

The three different timing modes are tested, and the timing diagrams and test results are shown in
Figures 9-3 to 9-18.

e -l |

THAES) g b=t — _'_'-ﬂ*?“"[w
RESET _.ﬁl- e ey —r I ! ;
M
A mocamncy]

e I 1 1 I 1 | 1
redct | st np-n | | Y ]
3 ;
o XOCOORORE EORROOONKORED | | T T A

at chaiwne | geacdost period I channel readoont peried

Figure 9-3: Timing diagram of MUX Timing (1) - Parallel clocking
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Correct Tlmlng |

Tk fun _ Trig'd
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Cursors Llnltlul:l
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CLK ODD )| W I"L'
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- Mo 600V 600 580 620  13Im = -

Figure 9-4: Test results of CLK and AD_Trig signals at MUX Timing (1)
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i double convert signals

AD TRIG |

EVEN

AD CONV

Before A/D

(C63)
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)

Figure 9-5: Test results of video output signal at MUX Timing (1)
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Select Even Video |1

Pl i
EVEN/ODD SEL € i
[T |t ettt
: - AT [eetosdvidT]
ARTHE R | R R LN TOOS O

3} ll. &

Odd Video

AD CONV
&
'J A/D Conwert . {
i Yir) j ) dd
Video Before A/D [ce-s? S : ° = -.-H-V
I}i S0V & soo0v - =oov : -, somv ) f'nn-n_s '][1hzkscsrs }[ Ak 12V
+w K GRO00pus 1 points
Figure 9-6: Test results of Even/Odd SEL and video output signals at MUX Timing (1)
TakRun o : = . Trig'd
" : . i
Pixel Data is output at the same time, Therefore, double A/D Convert signal is
output to sample pixel data quickly
AD TRIG
oDD
ADTRIG
EVEN
AD CONV
Before A/D
(c63)
“® v @ sV @ Se0v ; EH o TCE T ][-Ezﬁﬁ:s I AN LAY

Figure 9-7: Test results of AD_CONV and video output signals at MUX Timing (1)
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Figure 9-8: Timing diagram of MUX Timing (1a)
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Figure 9-9: Test results of CLK and AD_Trig signals at MUX Timing (1a)
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Figure 9-10: Test results of AD_CONV and video signals at MUX Timing (1a)
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Figure 9-11: Test results of CLK and MUX output signals at MUX Timing (1a)
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Figure 9-12: Test results of CLK, AD_Trig and video output signals at MUX Timing (1a)
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Figure 9-13: Timing diagram of MUX Timing (2)
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Figure 9-14: Test results of CLK and AD_Trig signals at MUX Timing (2)
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Figure 9-15: Test results of Even/Odd SEL and video output signals at MUX Timing (2)
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AUX trigger on falling edge of RESET
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Figure 9-16: Zoom-out view of Figure 9-15
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Figure 9-17: Test results of AD_CONV and video output signals at MUX Timing (2)
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Figure 9-18: Zoom-in view of Figure 9-17

9B. Dark Stability

To verify the dark output is stable over time, indicating the InGaAs sensor cold-side temperature is stable
at 0 deg. C., 600 scans are collected at 1 second integration time in the dark and the standard deviation is
calculated for each pixel. Note: The level grouping is caused by Even/Odd CMOS ROIC variation. This is
normal Even/Odd output pattern.
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Figure 9-19: Dark measurement at 1 sec integration time
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ADI Board 3, G9204-5125A, Ts=0C, Ti=1Sec, 600 Scans
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Figure 9-20: Standard deviation of 600 dark scans

9C. Noise

The readout noise was measured at 1 millisecond (msec) integration time.

ADI Board 3, G9204-512SA, Ts=25C, Ti=1mSec, 60 Scans
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Figure 9-21: Readout measurement
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Since the unity gain and the 5V reference voltage of ADC are used, one LSB represents 76.3uV. The
readout noise is in the range of 300puV~600uV.

9D. Linearity

Linearity without Dark Subtraction
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LED light intensity is fixed, LED stability was verified. Vary the integration time
to determine the linearity (double integration and signal should exactly double).

Figure 9-22: Linearity measurement with varying integration time

Linearity with Dark Subtraction
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Subtract the dark signal at each integration setting. Individual pixel linearity
plotted on log / log scale.

Figure 9-23: Linearity measurement with dark subtraction
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