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The objective of  this tech note is to provide the reference circuit design for our most demanded InGaAs 
linear image sensor (LIS) series. This reference design can be used to drive the Hamamatsu one-stage 
TE-cooled InGaAs LIS G9201-256SB, G9202-512SB, G9203-256SA, G9204-512SA, G9211-256SB, G9212-
512SB, G9213-256SA, G9214-512SA, and the two-stage TE-cooled InGaAs LIS with extended cutoff  
wavelength G9205-256/512WB, G9206-256/512WB, G9207-256WB, G9208-256/512WB. Please note: 
this reference circuit cannot drive the InGaAs LIS series including G14237-512WA, G11508-256/512SA, 
G11475-256/512WB, G11476-256WB, G11477-256/512WB, G11478-256/512WB, G11620-256/512SA, and 
G12230-512WB. For further information about the G11508/G1147x series please refer to
https://www.hamamatsu.com/resources/pdf/ssd/g11508_etc_kmir1032e.pdf.

These InGaAs LIS series are designed for near infrared multi-channel spectrophotometry, non-destructive 
inspection, and DWDM wavelength monitor applications. These sensors consist of  an InGaAs photodiode 
array, charge amplifiers, offset compensation circuit, and timing generator formed on a CMOS chip. The 
spectral response characteristics of  these series that the reference circuit can support is as follows:

1  Section Introduction

In this tech note a system design including the analog front-end sensor board, the FPGA modules, the USB 
processor, and the data acquisition software is described. And the test results of  the I/O signals, noise, and 
linearity are presented for various pixel formats and timing control modes.   

Figure 1-1: Spectral response
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The system includes four boards: the analog front-end (AFE) sensor board, the FPGA board, the USB 
board, and the interconnect board. The AFE sensor board was developed by Analog Devices, Inc. in 
collaboration with Hamamatsu; this board includes a Hamamatsu InGaAs linear array, followed by a 
1MSPS SAR ADC with integrated ADC driver. The board also includes a TEC controller and all of  the 
required voltages conditioning to drive the sensor. The FPGA board issues the control signals to the sensor 
via the Analog Devices AFE sensor board. The interconnect board is a passive device joining the FPGA 
development board, USB development board and Analog Devices AFE sensor board together. The overall 
system interconnection is shown in Figure 2-1.

The data returned by the sensor in response to the FPGA control signals is processed through the A/D 
converter on the Analog Devices AFE sensor board and received by the FPGA board. The FPGA sends the 
processed data to the USB processor via the EZ-USB FX3® Slave FIFO Interface for subsequent transfer to 
a PC. 

The data stream received from the Analog Devices sensor board consists of  16-bit words, each representing 
a single pixel value. The system supports two pixel formats: 256-pixel and 512-pixel mode. The pixel data 
rate is adjustable from 10KHz to 500KHz, resulting in data throughput of  160Kbps~8Mbps.

The FPGA board is controlled by the USB processor (EZ-USB FX3®) via an I2C interface with the processor 
acting as an I2C master and the FPGA as an I2C slave. The control is accomplished via a set of  the R/W 
control/status registers in the FPGA memory space. Refer to subsequent sections for the details of  the 
control/status register space and the I2C access protocol.

The logic/flow diagram is shown in Figure 2-2.

Figure 2-1: System interconnection

2  Section System Description
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Figure 2-2: Logic/Flow diagram
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3A. Theory of Operation and I2C and SPI Device Descriptions

Developed by Analog Devices, Inc. in collaboration with Hamamatsu, this board includes a Hamamatsu 
G920x InGaAs array, followed by two buffer amplifiers, a multiplexer to select a voltage from one of  
these two amplifiers, and a 1MSPS SAR ADC with integrated ADC driver. The board also includes a TEC 
controller and all of  the required power conditioning to power the board from an AC adapter. The product 
selections were chosen to exceed the performance targets of  the solution and provide high integration to 
enable a small footprint and simplicity of  design. For more information about the devices chosen for use in 
this design, please refer to 
https://www.analog.com/en/technical-articles/integration-collab-at-heart-of-hi-perf-image-sensor-ref-
design.html

Although the board does not conform to ANSI/VITA FMC standards due to the form factor and AC adapter 
power input, the connector area is designed to be able to interface with most FMC-compliant FPGA 
development boards in order to provide increased flexibility of  target platform.

3B. Providing Power to the Board

Provide 9VDC, 1.5A or greater through barrel connector J2 (recommended: CUI, Inc. SMI24-9-V-P5 or 
similar). Although there is reverse power protection on the board, ensure that the polarity of  the AC adapter 
is center positive for proper operation. For alternative InGaAs array variants, consider the power required by 
the TEC and ensure enough power is provided. This reference design board can support up to 3A maximum 
TEC current at up to 5V. A 9V, 2A AC adapter is enough to support a full 3A TEC current due to the high-
efficiency 9V to 5V step-down buck regulator (the LTM8053) that is on the board. The power input features 
reverse protection, a 6A slow-blow fuse, and a 15V bidirectional TVS to protect the board from power supply 
transients. When using one of  the G920x variants which has a 5V, 1.8A TEC, total power draw from the 9V 
AC wall adapter can be roughly 1.2A at maximum TEC drive.

3  Section Analog Devices Sensor Board
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3C. Array and Buffers

Figure 3-1: Sensor and buffers
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3D. Even-Odd Switch

Figure 3-2: Even-odd multiplexer

A single-pole dual throw (SPDT) solid-state switch follows the even and odd pixel buffer amplifiers and 
connects one of  the two to the ADC. A default pull-up resistor sets the switch to odd when floating, which is 
the correct side for the 256-pixel arrays. A 499Ω resistor ensures stability of  the buffers driving the switch 
capacitance and reduces current spikes during switching.

Depending on the variant, the array has up to two analog outputs, called ‘Video-even’ and ‘Video-odd’, 
which are suggested to be buffered in the array datasheet. For the 512-pixel versions of  the array, the even 
pixels come out on one line while the odd pixels are shifted out on the other line. The amplifier and filters are 
chosen to settle faster than the array, which specifies a 600ns output settling time. Provisions are included 
to match input resistances for the amplifier by placing 499Ω at R62 and R63 to reduce DC errors due to 
input bias current. If  the 499Ω R62 and R63 are installed, it may be necessary to install C37 and C38 to 
neutralize the resulting input pole and avoid instability. The analog output of  the array can go from 0.76V to 
4.5V. 
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3E. ADC Driver and ADC

The ADC driver is integrated into the ADAQ7980. By default, this stage is in unity-gain, which provides the 
optimal settling and does not negatively affect the noise. Provisions and recommendations are included to 
match the input to the full-scale 0-5V input range of  the ADC if  desired. The ADAQ7980 ADC is a 16-bit, 
1MSPS SAR ADC with an integrated ADC driver, reference buffer, LDO, and necessary passives that is 
connected to the SPI bus. For more information about this integrated signal chain, refer to 
https://www.analog.com/en/technical-articles/integration-collab-at-heart-of-hi-perf-image-sensor-
ref-design.html. The reference voltage is 5V, so one LSB represents 76.3µV.

3F. Serial Devices 

There are a total of  4 serial devices on the reference board:

SPI Bus
   • One AD5235 dual 25kΩ, 1024-position digital potentiometer
   • One ADAQ7980 16-bit ADC

I2C Bus
   • One AD7991 12-bit ADC
   • One AD5627 12-bit DAC

Figure 3-3: ADC
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3G. AD5235 Dual Potentiometer and Bias Divider

Figure 3-4: Dual POT for Vref and INP bias voltages

The programmable bias voltages for the sensor are derived from a voltage divider off  of  the precision 
ADR4550 5V voltage reference used for the ADC. Potentiometer 1 controls the INP voltage from 
approximately 2.5V at maximum code to approximately 5V at minimum code. Potentiometer 2 controls the 
VREF_SENSOR voltage from approximately 1V at minimum code to approximately 2V at maximum code. 
When potentiometer 1 is set to its lowest value of  0, the INP voltage is 5V. When INP is set to the maximum 
value of  1023, the INP voltage is 2.5V. Intermediate values can be calculated according to the following 
equation:

Equation 1

where D can range from 0 to 1023. Note that although the AD8606 is a ‘rail to rail’ output amplifier, it will only 
get to about 4.96V, so writing values lower than ‘16’ to the rheostat may not result in the desired output. This 
should not be a problem because the maximum bias voltage specified in the G920x datasheet is 4.6V. The 
default value written to this rheostat should be 205d (0xCD) to get 4.5V.

Potentiometer 2 controls the Vref  voltage going to the array. When the potentiometer is set to its lowest 
value of  0, the output on the Vref  pin is 1V. When the potentiometer is set to its highest value of  1024, the 
output on the Vref  pin is 2V. Intermediate values can be calculated according to the following equation:
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Equation 2

where D can range from 0 to 1023. Vref  should be set to a default value of  1.26V by writing 266d to the 
potentiometer (0x10A).

3H. AD7991 ADC

Note: I2C address: 010 1001

The AD7991 is a 12-bit ADC with a 2.5V reference provided by the ADN8835, so each LSB represents 
610µV. Channel 0 is used to measure the amplified and linearized thermistor output from the ADN8835.

The thermistor uses a simple linearization circuit that results in an output of  approximately 26.53mV/°C from 
-10°C to 40°C, with an offset of  0.566V.

To convert from volts to approximate temperature, use the following equation:

Equation 3

This approximation will result in errors of  slightly over 1°C at -10°C and 40°C, and nearly zero error at 15°C. 
Note that it is possible to write voltages lower than 0.239V, which will result in a lower setpoint temperature. 
However, the above approximation will result in large errors. For example, the equation above predicts that 
0V corresponds to -21.3°C, while the true temperature would be close to -29°C.

Figure 3-5: Thermistor linear approximation error
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Equation 4

where:
Temperature = The thermistor temperature in degrees Kelvin
Tr = 298.15K (Temperature at which nominal thermistor resistance is specified)
Rr = 5kΩ (Nominal thermistor resistance at Tr)
B = 3200K (Thermistor constant given in the datasheet)
Rx = 5.11kΩ (R43 in the schematic)
Rtop = 10kΩ (R32 in the schematic)
Rfb = 12kΩ (R31 in the schematic)

Note: Using this equation results in linearity error dominated by the number format precision used, and 
should be negligible if  implemented in floating point on a PC.

Channel 1 is used to measure the linearized thermistor output from the ‘hot’ side of  the heatsink. The 
same equation as above can be used to convert volts to temperature, assuming the same thermistor is 
used. Note that once again, the approximate equation will lose accuracy above 40°C, and the full equation 
should be used if  higher temperatures are expected. If  a different thermistor is used, then the equation will 
vary depending on the thermistor’s characteristics. For proper operation, the REF_SEL bit in the AD7991’s 
Configuration Register must be set to ‘1’ (this uses the Vin3/Vref  pin as the converter reference).

If  higher accuracy conversion is required, use the following equation:
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3I. DAC

Note: I2C address: 000 1110

The AD5627 DAC controls the temperature setpoint for the TEC controller. To calculate the temperature 
setpoint based on the output data written, use the following equation:

Equation 5

Figure 3-6: Temperature monitoring ADC
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3J. TEC Controller

The ADN8835, a TEC controller with integrated 3A power FETs, is used to very accurately control the 
temperature of  the image sensor array. The AD5627 sets the temperature setpoint and the AD7991 reads 
the hot side and cold side thermistor temperatures. The TEC Voltage Limit and Current Limit are set by 
resistor dividers tailored to the values needed for the G920x family. To change these limits to accommodate 
a different family of  image sensors with different TEC requirements, see Analog Devices UG-951 for 
suggestions on the resistor value. For more information on thermoelectric cooler control, refer to ADN8835 
datasheet. It may also be necessary to adjust the analog PID components and thermistor components in 
order to accommodate other sensors. The EN/SY pin is pulled up in order to be enabled by default, but 
the TEC controller can be shut down if  this signal is pulled low by the FPGA. This pin can also be used for 
synchronization, as described below.

Figure 3-7: Temperature setting DAC

Figure 3-8: TEC control
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Indicators and Test Points

Ultralow power LEDs are provided to indicate temp good from the ADN8835 (DS4) and power good for all 
power rails: DS3 indicates POS5V_TEC, DS2 indicates POS7VA, and DS1 indicates POS5VD/POS5VA 
power good. Surface mount test points are provided for many signals to be probed, especially in the dense 
TEC control portion of  the circuit, along with corresponding ground test points.

Synchronization Feature and LTM8053 Modes

To remove any switching clock intermodulation from the circuit, this design can be fully synchronized. 
ADN8835 can be synchronized by driving the shutdown signal, BAR_TEC_SD, with a clock between 
1.85MHz and 3.25MHz. LTM8053 can also be synchronized by installing a provisional zero ohm resistor 
in position R35 to connect its SYNC pin to the BAR_TEC_SD signal. This reduces the maximum 
synchronization clock frequency to 3MHz. The clocks of  both of  these devices may be synchronized to a 
clock output from the FPGA that is synchronous with the sensor pixel clock signals, and the ADAQ7980 
samples may be taken at integer multiples of  the sync clock frequency, eliminating the effect of  switching 
noise on the measurement. For more information, see the notes on the schematic and the ADN8835 and 
LTM8053 datasheets. The full complement of  SYNC/MODE options for LTM8053 are described in the 
schematic. By default, the ADN8835 and the LTM8053 are both running on their internal clocks and the 
LTM8053 is in pulse-skip mode.

Figure 3-9: SYNC / mode selection
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4  Section FPGA/USB Processor Data Path

Figure 4-1: FPGA to EZ-USB FX3 interface

The pixel data is transferred between the FPGA and the USB processor using a 16-bit Synchronous Slave 
FIFO interface operating at 80MHz.

The data stream consists of  16-bit pixel word comprising 256 or 512 pixels per line.

The line-to-line separator consists of  2x 16-bit marker words:
Marker Word 1: 0xAAAA
Marker Word 2: 0x5555

The marker words appear in sequence: Marker Word 1, followed by Marker Word 2. The marker words are 
intended to serve the function equivalent to V-sync in video frames. Note: There is no equivalent H-syncs  
as the frame is a single line.
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4A. Interface Configuration
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4B. EZ-USB Development Board Configuration
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Figure 4-2: Cypress EZ-USB development board configuration
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4C. FPGA/USB Processor Interface

The USB processor configures the FPGA control registers via I2C interface as described in Section 5. Once 
the desired configuration parameters have been set, the USB processor sets Reg_01 bits (7:6) = “11”, 
enabling the sensor control and the Slave FIFO operation.

The USB processor can disable the sensor control and/or Slave FIFO operation at any time in order to re-
configure the control registers.
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5  Section  FPGA/USB Processor Control/Status Path

5A. Access Protocol

1.  The FPGA acts as I2C slave with address 0xAA.

2.  EZ-USB FX3 processor acts as an I2C master.

3.  Each I2C write transfer consists of  the following:

 3-1.  START (generated by master)

 3-2.  Byte 1 = 0xAA

 3-3.  ACK (generated by the slave)

 3-4.  Byte 2 = Selected control register address

 3-5.  ACK (generated by the slave)

 3-6.  Byte 3 = Data byte to be written to the selected FPGA control register address

 3-7.  ACK (generated by the slave)

 3-8.  STOP
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4.  Each single byte I2C read transfer consists of  the following:

 4-1.  START

 4-2.  Byte 1 = 0xAA

 4-3.  ACK (generated by the slave)

 4-4.  Byte 2 = Selected control register address
 
 4-5.  ACK (generated by the slave)

 4-6.  RESTART

 4-7.  Byte 3 = 0xAB

 4-8.  ACK (generated by the slave)

 4-9.  Byte 4 = Data byte from the selected control register returned by the FPGA

 4-10. NACK (generated by the master)

 4-11. STOP
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5.  Each multi-byte I2C read transfer consists of  the following:

 5-1.  START

 5-2.  Byte 1 = 0xAA

 5-3.  ACK (generated by the slave)

 5-4.  Byte 2 = Selected control register address

 5-5.  ACK (generated by the slave)

 5-6.  RESTART

 5-7.  Byte 3 = 0xAB

 5-8.  ACK (generated by the slave)

 5-9.  Byte 4-1 = Data byte from the selected control register returned by the FPGA

 5-10. ACK (generated by the master)

 5-11. Byte 4-2 = Data byte from the selected control register returned by the FPGA

 5-12. ACK (generated by the master)

 5-13. Byte 4-3 = Data byte from the selected control register returned by the FPGA

 5-14. ACK (generated by the master)

 5-15. Byte 4-4 = Data byte from the selected control register returned by the FPGA

 5-16. NACK (generated by the master)

 5-17. STOP

Note: The number of  bytes read is not limited to 4 (the 4 bytes read transfer is shown as an example only). 
As additional bytes are being read, the address pointer is auto-incrementing, starting from the address 
specified by Byte 2.
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5B. Memory Space/Register Definitions
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Clock Divider

Odd/Even Clock rate is derived from 60MHz clock as follows:
Odd/Even Clock Rate = 60MHz ÷ (2×Clock_Divider)

The table above provides some examples of  the clock divider settings. All values of  Clock_Divider[8:0] 
in the range from 1 to 511 are valid, resulting in the achievable pixel clock in the range from 7.339KHz 
to 3.750MHz, and the corresponding Odd/Even Clock Rate in the range from 58.708KHz to 30.000MHz. 
Note: Selecting a clock divider value outside of  the valid range will result in the value being ignored. The 
maximum operation frequency of  the sensor is specified as 4MHz.
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Integration Time

Integration time is derived based on Odd/Even Clock Rate and the Integration_Time value as follows:
Actual Integration Time = Integration_Time ÷ Odd/Even Clock Rate

Setting Integration_Time[31:0] to 0x00000008 with Clock_Divider[8:0] = 511
10

 results in integration time 
being:  8 / 58.708KHz = 136.266µsec

Max Integration Time

Setting Integration_Time[31:0] to 0xFFFFFFFF and Clock_Divider[8:0] = 1 results in integration time being:
(232-1) / 30.000MHz = 143.166sec

Min Integration Time

Setting Integration_Time[31:0] to 0x00000001 and Clock_Divider[8:0] = 511
10

 results in integration time 
being:  1 / 58.708KHz = 136.267µsec
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6  Section  FPGA Design Description

The FPGA design is based on Intel (Altera) Cyclone III device EP3C25F324C8. The FPGA design is written 
in VHDL. The design consists of  the major blocks listed in Table 6-1.
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Figure 6-1: FPGA design structure

The structure of  the FPGA design is shown in Figure 6-1.
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6A. clock_reset_gen.vhd

Module Inputs and Outputs
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Module IP

Altera ALTPLL Megafunction: PLL, shown in Figure 6-2, generates 60MHz, 120MHz, and 60MHz clocks 
based on 50MHz clock input.

Figure 6-2: Altera ALTPLL megafunction IP providing PLL functionality

Module Description

This module receives 50MHz clock from the Altera Cyclone-III Starter Board (DK-START-3C25N). The 
received clock is provided to the PLL based on ALTPLL Megafunction IP provided by Altera. The resultant 
clocks clk, clk_2x and clk_del are generated.

The module receives an asynchronous reset signal “reset_n” and creates asynchronously asserted, 
synchronously to “clk” de-asserted, active-low reset output “rst_n”.

The module generates various clock enable outputs (programmable ones based on Clock_Divider: clk_
en_1x and clk_en_2x; fixed ones: at 1msec, at 10msec, at 100msec intervals).
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6B. control.vhd

Module Inputs and Outputs

Module Description

The module combines an I2C slave module (I2C_xf) with cbus_con module allowing to perform a write or a 
read access to a bank of  registers connected external to control module. Refer to Figures 6-3 and 6-4.

During I2C write transfers the I2C_xf  receives one byte at a time. A typical transfer consists of  2 payload 
bytes: register address byte, followed by register data byte.

Each received data payload byte is presented at recv_data(7:0) output of  the I2C_xf  module, while being 
accompanied by ser_load_en active-high single clock cycle pulse. This indicates to the CBUS controller 
(cbus_con) that the data is to be stored.

first_byte output from I2C_xf  indicates whether the data byte presented to cbus_con represents register 
address or register data. If  first_byte is asserted (active-high single clock cycle pulse) concurrently with 
data_vld output of  I2C_xf, then the data byte is register address, else the data byte is register data to be 
stored at the respective address location.

During I2C read transfers the I2C_xf  module transfers the data presented at xmit_dat(7:0) input onto the  
I2C bus.
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The first data byte serves as register address, while the second data byte serves as register write data. A 
typical register read transfer is shown in Figure 6-4.

Figure 6-3: Typical I2C write transfer. STA = Start, SA = Slave ACK, STP = Stop, W = Write, X = any value (1 or 0)

Figure 6-4: Typical I2C read transfer. MN = Master NACK, R = Read

A typical register write transfer is shown in Figure 6-3.
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A read transaction consists of  two separate transfers:
1)  The first is a write transfer with first data byte having all zeros, and the second data byte used to indicate 

the register address to be accessed for a subsequent read transfer.
2)  The second is a read transfer with data byte returned by the slave_xf  containing the data corresponding 

to the register address presented during the first step.

Figure 6-5: Control module architecture
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6C. I2C_xf.vhd

Module Inputs and Outputs
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Figure 6-6: I2C module I/Os
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Module Description

This module implements the physical access to the I2C bus. The module acts as an I2C slave with slave 
address passed via I2C_A port. The module responds to 8-bit slave address of  0xAA/0xAB. The I2C 
interface supports I2C clock rates of  up to 400KHz.

The I2C module design is based on a finite state machine (FSM). The FSM is shown in Figure 6-7.

The FSM dwells in IDLE state until start is detected on the I2C bus. The FSM proceeds through A7_ST to 
A0_ST states receiving one address bit at a time with each falling edge of  SCL. Upon arriving to ADDR 
state the received address is compared to the device address (0xAA/0xAB). If  the upped 7 bits match, the 
slave asserts acknowledge and proceeds to receive a data byte (states D7_ST through D0_ST). Each bit of  
the data byte is received on the falling edge of  the SCL line.

SCL_fedge represents a falling edge of  I2C SCL clock received by the FPGA. All other conditional signals 
are self-explanatory.

Figure 6-7: I2C state machine
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6D. cbus_con.vhd

Module Inputs and Outputs
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Figure 6-8: CBUS_CON module I/Os
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Module Description

cbus_con module receives raw bytes from the I2C_xf  module and interprets them into register read and 
write accesses. Once interpreted, the module produces address (CBUS_A), write data (CBUS_Do) and 
write strobe (CBUS_WRS) signals to the downstream register bank for a write transaction; or (CBUS_A) and 
read strobe (CBUS_Read) for a read transaction. The read data is CBUS_Di.

The module also transfers the read data back to I2C_xf  module for a transfer back to I2C master via the 
serial bus.

Figure 6-9: CBUS_CON state machine



6E. regs.vhd

Module Inputs and Outputs

42
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Figure 6-10: regs module I/Os
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Module Description

regs module provides access to the contents of  the registers at addresses 0x00 through 0x2F.

When a read transfer in the range from 0x0C to 0x19 is requested, the contents of  iREG_0C through 
iREG_19 is used.

Read access to the address range 0x0C to 0x11 is mapped to AD7991 ADC channel 0 through 2.

REG_00 to REG_2F provide control over the various functions of  the FPGA.



6F. detector_con.vhd

Module Inputs and Outputs
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Figure 6-11: detector_con module I/Os
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Module Description

The detector controller module provides the logic and timing for the control signals needed to properly 
control a detector device under test.

The controller supports the following operating modes:

 • 256 or 512 pixels

 • Regular or High-speed operation

 • Normal (Sequential) or Parallel operating mode

Figure 6-12 through Figure 6-28 demonstrate the relationship between the detector control signals in all 
possible operating modes.

Figure 6-12: 256-pixel, regular speed, sequential mode timing

Figure 6-13: 256-pixel, regular speed, sequential mode operation
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Figure 6-14: 256-pixel, regular speed, sequential mode operation around reset

Figure 6-15: 512-pixel, regular speed, sequential mode operation around reset

Figure 6-16: 512-pixel, regular speed, sequential mode operation overview
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Figure 6-17: 256-pixel, high speed, sequential mode operation around reset

Figure 6-18: 256-pixel, high speed, sequential mode operation overview

Figure 6-19: 512-pixel, high speed, sequential mode operation around reset
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Figure 6-20: 512-pixel, high speed, sequential mode operation overview

Figure 6-21: 256-pixel, regular speed, parallel mode operation around reset

Figure 6-22: 256-pixel, regular speed, parallel mode operation overview
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Figure 6-23: 512-pixel, regular speed, parallel mode operation around reset

Figure 6-24: 512-pixel, regular speed, parallel mode operation overview

Figure 6-25: 256-pixel, high speed, parallel mode operation around reset
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Figure 6-26: 256-pixel, high speed, parallel mode operation overview

Figure 6-27: 512-pixel, high speed, parallel mode operation around reset

Figure 6-28: 512-pixel, high speed, parallel mode operation overview
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The detector controller module design is based on an FSM (Finite State Machine) shown in Figure 6-29.

Figure 6-29: Detector controller state machine
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Figure 6-30: adc_con module I/Os

Module Description

adc_con module serves as an interface between the FPGA and the two Analog Devices ICs sharing the 
same SPI bus: ADAQ7980 (ADC) and AD5235 (Dual Digital Potentiometer). adc_con module includes 
adc_xf  module, which implements the interface logic, while adc_con serves the functions of  a wrapper 
and contains some glue logic. As the SPI interface is shared, the design of  the adc_xf  includes an arbiter, 
allowing access to both physical devices using the shared interface.



6H. adc_xf.vhd

Module Inputs and Outputs
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Module Description

adc_xf  module serves as an interface between the FPGA and the two Analog Devices ICs sharing the 
same SPI bus: ADAQ7980 (ADC) and AD5235 (Dual Digital Potentiometer). adc_xf  module implements the 
interface logic based on state machines. As the SPI interface is shared, the design of  the adc_xf  includes 
an arbiter, allowing access to both physical devices using the shared interface. The arbitration is based on 
the fact control coming from the detector_con module. 

During the time when odd/even clocks and strobes are actively generated and odd/even trigger inputs are 
output by the sensor (adtrig_odd/ad_trig_even) the adc_xf  communicates with ADAQ7980 to acquire the 
corresponding pixel data. During the reset intervals, when the sensor is performing integration, adc_xf  
allows the Read and Write accesses to the digital potentiometer AD5235. The accesses to the digital 
potentiometer are suspended while the accesses to ADC continue following the integration interval.

The ADC state machine is shown in Figure 6-31. The FSM idles in ADC_IDLE_ST state waiting for the 
next rising edge of  adc trigger from the sensor. adc_tcnv_cnt is initialized to 60; hence the state machine 
waits in ADC_CNV_ST until the conversion is finished. The wait time is 60 x 60MHz periods, or 1000nsec. 
ADAQ7980 device conversion time ranges from 500 to 710nsec. With 1000nsec conversion time allowance, 
the design provides for an ample margin.

Figure 6-31: ADC state machine
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The interface to ADC consists of  the SPI (with MOSI and Chip-Select not connected) and CNV signal (adc_
cnv). During ADC_RD_SNV_RESULT state the 16-bit ADC data is serially captured, while the adc_xf  pulses 
SPI clock SCLK.

The digital potentiometer state machine is shown in Figure 6-32.

Figure 6-32: Digital potentiometer state machine

The digital potentiometer read and write requests are received via I2C and result in the corresponding 
trigger requests being generated. In response to the trigger requests, while the detector controller is in the 
reset (integration) phase, the accesses to the digital potentiometer are performed.



6I. AD7991_con.vhd

Module Inputs and Outputs

60



61

Figure 6-33: AD7991_con module I/Os
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Module Description

AD7991_con module is responsible for high-level control of  the AD7991 I2C ADC. The system contains 2 
I2C devices: AD7991 12-bit ADC and AD5627 12-bit DAC. Both devices share the same I2C bus. To allow 
for the FPGA to access both devices the design includes a Multi-Port Access Controller (MPAC), connected 
to I2C Master at one side and to the two I2C controllers (AD7991_con and AD5627_con) on the other side.

AD7991_con controls the high-level I2C commands and data issued to and received from the DAC. The 
control is based on a state machine shown in Figure 6-34.

Figure 6-34: AD7991_con state machine



6J. AD5627_con.vhd

Module Inputs and Outputs

63

During the initialization phases of  the state machine (INIT_SETUP_ST through INIT_DONE_ST), the 
AD7991 is initialized by performing the following transactions:
Write 00111000 to enable reading Ch0 and Ch1, Select External REF, Enable I2C filtering, Enable bit try 
and Sample Delay.

Upon completion of  the initialization the controller is ready to access the ADC. The ADC read requests are 
performed via slave I2C interface, when the external USB controller accesses the respective FPGA slave 
registers. In response, the controller state machine traverses states ADC_RD_SETUP_ST through ADC_
RD_DONE_ST and reads the three available analog channels.
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Figure 6-35: AD5627_con module I/Os
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Module Description

AD5627_con module is responsible for the initialization and high-level control, including data reads and 
writes of  the AD5627 I2C DAC. All accesses to the physical DAC are performed via I2C bus, using I2C 
master and a Multi-Port Access Controller (MPAC). The accesses to AD5627 are shared with I2C transfers 
performed in the course of  accesses to AD7991, and therefore are arbitrated by the MPAC. The controller 
is based on a state machine shown in Figure 6-36.

Figure 6-36: AD5627_con state machine
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AD5627 initialization consists of  4 steps:

1. LDAC Setup:
a. Data Byte 1 = “00110000” (Command = “110”)
b. Data Byte 2 = “00000000” (Don’t Care)
c. Data Byte 3 = “00000001” (DAC B LDAC pin enabled, DAC A LDAC pin disabled)

2. Reference Setup:
a. Data Byte 1 = “00111000” (Command = “111”)
b. Data Byte 2 = “00000000” (Don’t Care)
c. Data Byte 3 = “00000001” (Internal Reference ON)

3. Load Input Shift Register:
a. Data Byte 1 = “01011000” (Byte Selection (S) = 1, Command = “011” (Write to and Update DAC Channel 
n), DAC Address = “000” (DAC A))
b. Data Byte 2 = DAC(11:4)
c. Data Byte 3 = DAC(3:0) & “0000”

4. Power-up:
a. Data Byte 1 = “00100000” (Command = Power-up)
b. Data Byte 2 = “00000000” (Don’t Care)
c. Data Byte 3 = “00000001” (Normal Operation (5:4) = “00”, Select DAC A (bit 0 = ‘1’))

For all subsequent accesses DAC write is performed whenever a trigger is received. Upon a trigger, which is 
an I2C slave write to the FPGA from the USB sub-system, the state machine sends the 12-bit DAC input to 
AD5627 device.
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Figure 6-37: MPAC module I/Os
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Module Description

The Multi-Port Access Controller links the high-level controllers needing to perform high-level I2C transfers 
with a single I2C Master controller available on the FPGA. AD7991_con and AD5627_con controllers utilize 
2 of  the 8 available ports on the MPAC. The MPAC performs round-robin access arbitration between all 
8 ports. In reality, since only 2 ports are utilized the available bandwidth is split ~50/50 between the two 
controllers.

The MPAC design is based on 2 state machines: one state machine is used for round-robin access 
arbitration, while the second state machine is used for control of  the interface with the I2C master module 
I2C_master.

The arbitration state machine is shown in Figure 6-38. A request is checked one at a time. If  a request is 
asserted, the corresponding port is allowed access to the I2C Master interface via the I2C Master Interface 
state machine shown in Figure 6-39.

Figure 6-38: MPAC arbitration state machine

Figure 6-39: MPAC I2C master interface state machine
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Figure 6-40: I2C master module I/Os
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Module Description

This module interfaces to MPAC module and provides for master access to the I2C bus. The two slave 
devices accessed by the master are AD7991 and AD5627. The module design is based on a state machine 
shown in Figure 6-41.

Figure 6-41: I2C master state machine
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Figure 6-42: tx_fifo module I/Os



6N. slavefifo2b_streamin.vhd
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Module Description

This module serves the purpose of  storing the data received from the image sensor prior to having that data 
transferred to the USB microprocessor via slavefifo2b_streamin module. The FIFO size is 256 words deep, 
with each word being 16-bits wide.
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Figure 6-43: slavefifo2b_streamin module I/Os
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Module Description

This module implements Synchronous Slave FIFO Interface in accordance with Cypress CYUSB301X 
datasheet. The synchronous slave FIFO interface is used for transferring pixel data to the USB 
microprocessor and onto the PC. The slave FIFO interface is based on Cypress Application Note AN65974. 
The interface design from the application note has been revised and further elaborated and modified for this 
present application. The implementation is centered on the state machine shown in Figure 6-44.

Figure 6-44: Slave FIFO interface state machine
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7  Section  USB Sub-System

The USB interface sub-system is based upon Cypress EZ-USB FX3 development kit. At the heart of  the 
Cypress platform is USB microprocessor CYUSB301X supporting USB3.0 interface.

The USB microprocessor design is based on Cypress Synchronous Slave FIFO. SlaveFIFOSync project is 
provided as a part of  this system. The project is comprised of  the following files:

1. cyfx_gcc_startup.S:
Start-up code for the ARM-9 core on the FX3 device. This assembly source file follows the syntax for the 
GNU assembler.

2. cyfxslfifosync.h:
C header file that defines constants used by this example implementation. Can be modified to select USB 
connection speed, endpoint numbers and properties, etc.

3. cyfxslfifousbdscr.c:
C source file that contains USB descriptors used by this example. VID and PID are defined in this file.

4. cyfxgpif_syncsf.h:
C header file that contains the data required to configure the GPIF interface to implement the Sync Slave 
FIFO protocol.

5. cyfxtx.c:
C source file that provides ThreadX RTOS wrapper functions and other utilities required by the FX3 firmware 
library.

6. cyfxslfifosync.c:
Main C source file.

7. makefile:
GNU make compliant build script for compiling this project.

This project configures and uses the GPIF II interface on the FX3 device in synchronous slave FIFO mode. 
The FPGA acts as a master device that implements the Cypress-defined Sync Slave FIFO.

This project implements the following functions:
1. Configuration of  the GPIF II interface to implement the Sync Slave FIFO protocol.
2. Enumeration as a vendor specific USB device with two bulk endpoints (1-OUT and 1-IN).
3.  Creation of  MANUAL DMA channels to enable the following data paths:  

a.  All data received from the USB host through the 1-OUT endpoint is forwarded to the master device on 
the slave port through socket 3.

    b.  All data received from the master device on the slave port through socket 0 is forwarded to the USB 
host through the 1-IN endpoint.

4.  When any data packet is received through one of  the ingress sockets, the application is notified and 
forwards the data to the recipient through a DMA callback function.
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The output of  the compilation is SlaveFifoSync.img, which is loaded into the Cypress EZ-USB board using 
USB Control Center Application, part of  EZ-USB FX3 SDK Software tools.

To load the file into the target perform the following steps (1-5):
1) Connect EZ-USB FX3 board to the PC.
2) Once the drivers for the USB device are installed, the screen shown in Figure 7-1 will be seen.

Figure 7-1: USB control center initial screen
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Figure 7-2: Program FX3 device

3)  Select the device (Cypress FX3 USB BootLoader Device), then click on Program -> FX3 -> RAM (refer to 
Figure 7-2).
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4) Navigate to the location of  “SlaveFifoSync.img” and select “Open.”
5)  The new driver will be loaded by the operating system, resulting in the following screen shown in  

Figure 7-3.

Figure 7-3: FX3 device has been programmed

Now, the USB development board is ready to perform data transfers.

Notes:
1)  The firmware has been loaded into RAM; hence should the power to the board be turned off  (or USB 

cable unplugged from the PC), the programming steps would have to be repeated.
2) It is important to use a high quality USB 3.0 cable and a corresponding USB 3.0 port on the PC.
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8  Section  PC Software and IGAA Driver Library

The PC software uses the IGAA Driver Library for control, monitoring and data acquisition based on the 
development system described herein. Please refer to “Hamamatsu Driver Circuit for Image Sensor Control 
Library” document for the detailed information on the available functions.



9A. Timing Operations and Analog I/O Signals

This is the timing diagram of  the G9201~8 and G9211~4 sensors. The integration time is set by the Reset 
input pulse width. Each pixel is being read out every 8 clocks.

Figure 9-1: The G920x sensor timing diagram
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9  Section  Test Results
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In the software interface, the pixel format, readout mode, integration time, temperature, bias voltages, and 
the number of  line data to be written can be defined.

Figure 9-2: Parameter setting in the software interface
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Pixel Number Select: 256 or 512.

For a 512-pixel array, there are two video output ports on the sensor chip: even and odd. Three readout 
modes are designed to read out from the sensor depending on the different multiplexer timing:
Multiplexer Timing (1) – Even/Odd simultaneous (parallel)
Multiplexer Timing (1a) – Non-Return to Zero (stagger)
Multiplexer Timing (2) – Clock burst with return to zero between pixel reads (bursts) – the same as C8062, 
the standard InGaAs multichannel detector head offered by Hamamatsu

The three different timing modes are tested, and the timing diagrams and test results are shown in 
Figures 9-3 to 9-18.

Figure 9-3: Timing diagram of MUX Timing (1) - Parallel clocking
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Figure 9-4: Test results of CLK and AD_Trig signals at MUX Timing (1)

Figure 9-5: Test results of video output signal at MUX Timing (1) 
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Figure 9-6: Test results of Even/Odd SEL and video output signals at MUX Timing (1) 

Figure 9-7: Test results of AD_CONV and video output signals at MUX Timing (1)  
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Figure 9-8: Timing diagram of MUX Timing (1a)  

Figure 9-9: Test results of CLK and AD_Trig signals at MUX Timing (1a)  
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Figure 9-10: Test results of AD_CONV and video signals at MUX Timing (1a)  

Figure 9-11: Test results of CLK and MUX output signals at MUX Timing (1a) 



88

Figure 9-12: Test results of CLK, AD_Trig and video output signals at MUX Timing (1a)  

Figure 9-13: Timing diagram of MUX Timing (2) 
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Figure 9-14: Test results of CLK and AD_Trig signals at MUX Timing (2)  

Figure 9-15: Test results of Even/Odd SEL and video output signals at MUX Timing (2)
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Figure 9-16: Zoom-out view of Figure 9-15  

Figure 9-17: Test results of AD_CONV and video output signals at MUX Timing (2) 



9B. Dark Stability

To verify the dark output is stable over time, indicating the InGaAs sensor cold-side temperature is stable 
at 0 deg. C., 600 scans are collected at 1 second integration time in the dark and the standard deviation is 
calculated for each pixel. Note: The level grouping is caused by Even/Odd CMOS ROIC variation. This is 
normal Even/Odd output pattern.
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Figure 9-18: Zoom-in view of Figure 9-17  

Figure 9-19: Dark measurement at 1 sec integration time 
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Figure 9-20: Standard deviation of 600 dark scans

9C. Noise

The readout noise was measured at 1 millisecond (msec) integration time.

Figure 9-21: Readout measurement
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Figure 9-22: Linearity measurement with varying integration time 

Since the unity gain and the 5V reference voltage of  ADC are used, one LSB represents 76.3µV. The 
readout noise is in the range of  300µV~600µV.

9D. Linearity

Figure 9-23: Linearity measurement with dark subtraction 
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