
InGaAs Linear Sensor
Reference Circuit Design

Technical Note

Authors
John Gilmore, Hamamatsu Corporation
Lu Cheng, Hamamatsu Corporation
Scott Hunt, Analog Devices, Inc.

Web info
Find this tech note online at:

https://hub.hamamatsu.com/us/en/technical-notes/image-sensors/ingaas-linear-
sensor-reference-circuit-design-section-1.html

Hamamatsu Corporation: www.hamamatsu.com

Analog Devices, Inc.: www.analog.com

Table of Contents

1. Introduction

2. System description

3. Analog Devices sensor board

4. FPGA/USB processor data path

5. FPGA/USB processor control/status path

6. FPGA design description

7. USB sub-system

8. PC software and IGAA driver library

9. Test results

1

2

4

14

20

29

76

80

81

 .

. .

 .

 .

. .

. .

 .

 .

 .

1

The objective of this tech note is to provide the reference circuit design for our most demanded InGaAs
linear image sensor (LIS) series. This reference design can be used to drive the Hamamatsu one-stage
TE-cooled InGaAs LIS G9201-256SB, G9202-512SB, G9203-256SA, G9204-512SA, G9211-256SB, G9212-
512SB, G9213-256SA, G9214-512SA, and the two-stage TE-cooled InGaAs LIS with extended cutoff
wavelength G9205-256/512WB, G9206-256/512WB, G9207-256WB, G9208-256/512WB. Please note:
this reference circuit cannot drive the InGaAs LIS series including G14237-512WA, G11508-256/512SA,
G11475-256/512WB, G11476-256WB, G11477-256/512WB, G11478-256/512WB, G11620-256/512SA, and
G12230-512WB. For further information about the G11508/G1147x series please refer to
https://www.hamamatsu.com/resources/pdf/ssd/g11508_etc_kmir1032e.pdf.

These InGaAs LIS series are designed for near infrared multi-channel spectrophotometry, non-destructive
inspection, and DWDM wavelength monitor applications. These sensors consist of an InGaAs photodiode
array, charge amplifiers, offset compensation circuit, and timing generator formed on a CMOS chip. The
spectral response characteristics of these series that the reference circuit can support is as follows:

1 Section Introduction

In this tech note a system design including the analog front-end sensor board, the FPGA modules, the USB
processor, and the data acquisition software is described. And the test results of the I/O signals, noise, and
linearity are presented for various pixel formats and timing control modes.

Figure 1-1: Spectral response

2

The system includes four boards: the analog front-end (AFE) sensor board, the FPGA board, the USB
board, and the interconnect board. The AFE sensor board was developed by Analog Devices, Inc. in
collaboration with Hamamatsu; this board includes a Hamamatsu InGaAs linear array, followed by a
1MSPS SAR ADC with integrated ADC driver. The board also includes a TEC controller and all of the
required voltages conditioning to drive the sensor. The FPGA board issues the control signals to the sensor
via the Analog Devices AFE sensor board. The interconnect board is a passive device joining the FPGA
development board, USB development board and Analog Devices AFE sensor board together. The overall
system interconnection is shown in Figure 2-1.

The data returned by the sensor in response to the FPGA control signals is processed through the A/D
converter on the Analog Devices AFE sensor board and received by the FPGA board. The FPGA sends the
processed data to the USB processor via the EZ-USB FX3® Slave FIFO Interface for subsequent transfer to
a PC.

The data stream received from the Analog Devices sensor board consists of 16-bit words, each representing
a single pixel value. The system supports two pixel formats: 256-pixel and 512-pixel mode. The pixel data
rate is adjustable from 10KHz to 500KHz, resulting in data throughput of 160Kbps~8Mbps.

The FPGA board is controlled by the USB processor (EZ-USB FX3®) via an I2C interface with the processor
acting as an I2C master and the FPGA as an I2C slave. The control is accomplished via a set of the R/W
control/status registers in the FPGA memory space. Refer to subsequent sections for the details of the
control/status register space and the I2C access protocol.

The logic/flow diagram is shown in Figure 2-2.

Figure 2-1: System interconnection

2 Section System Description

3

Figure 2-2: Logic/Flow diagram

4

3A. Theory of Operation and I2C and SPI Device Descriptions

Developed by Analog Devices, Inc. in collaboration with Hamamatsu, this board includes a Hamamatsu
G920x InGaAs array, followed by two buffer amplifiers, a multiplexer to select a voltage from one of
these two amplifiers, and a 1MSPS SAR ADC with integrated ADC driver. The board also includes a TEC
controller and all of the required power conditioning to power the board from an AC adapter. The product
selections were chosen to exceed the performance targets of the solution and provide high integration to
enable a small footprint and simplicity of design. For more information about the devices chosen for use in
this design, please refer to
https://www.analog.com/en/technical-articles/integration-collab-at-heart-of-hi-perf-image-sensor-ref-
design.html

Although the board does not conform to ANSI/VITA FMC standards due to the form factor and AC adapter
power input, the connector area is designed to be able to interface with most FMC-compliant FPGA
development boards in order to provide increased flexibility of target platform.

3B. Providing Power to the Board

Provide 9VDC, 1.5A or greater through barrel connector J2 (recommended: CUI, Inc. SMI24-9-V-P5 or
similar). Although there is reverse power protection on the board, ensure that the polarity of the AC adapter
is center positive for proper operation. For alternative InGaAs array variants, consider the power required by
the TEC and ensure enough power is provided. This reference design board can support up to 3A maximum
TEC current at up to 5V. A 9V, 2A AC adapter is enough to support a full 3A TEC current due to the high-
efficiency 9V to 5V step-down buck regulator (the LTM8053) that is on the board. The power input features
reverse protection, a 6A slow-blow fuse, and a 15V bidirectional TVS to protect the board from power supply
transients. When using one of the G920x variants which has a 5V, 1.8A TEC, total power draw from the 9V
AC wall adapter can be roughly 1.2A at maximum TEC drive.

3 Section Analog Devices Sensor Board

5

3C. Array and Buffers

Figure 3-1: Sensor and buffers

6

3D. Even-Odd Switch

Figure 3-2: Even-odd multiplexer

A single-pole dual throw (SPDT) solid-state switch follows the even and odd pixel buffer amplifiers and
connects one of the two to the ADC. A default pull-up resistor sets the switch to odd when floating, which is
the correct side for the 256-pixel arrays. A 499Ω resistor ensures stability of the buffers driving the switch
capacitance and reduces current spikes during switching.

Depending on the variant, the array has up to two analog outputs, called ‘Video-even’ and ‘Video-odd’,
which are suggested to be buffered in the array datasheet. For the 512-pixel versions of the array, the even
pixels come out on one line while the odd pixels are shifted out on the other line. The amplifier and filters are
chosen to settle faster than the array, which specifies a 600ns output settling time. Provisions are included
to match input resistances for the amplifier by placing 499Ω at R62 and R63 to reduce DC errors due to
input bias current. If the 499Ω R62 and R63 are installed, it may be necessary to install C37 and C38 to
neutralize the resulting input pole and avoid instability. The analog output of the array can go from 0.76V to
4.5V.

7

3E. ADC Driver and ADC

The ADC driver is integrated into the ADAQ7980. By default, this stage is in unity-gain, which provides the
optimal settling and does not negatively affect the noise. Provisions and recommendations are included to
match the input to the full-scale 0-5V input range of the ADC if desired. The ADAQ7980 ADC is a 16-bit,
1MSPS SAR ADC with an integrated ADC driver, reference buffer, LDO, and necessary passives that is
connected to the SPI bus. For more information about this integrated signal chain, refer to
https://www.analog.com/en/technical-articles/integration-collab-at-heart-of-hi-perf-image-sensor-
ref-design.html. The reference voltage is 5V, so one LSB represents 76.3µV.

3F. Serial Devices

There are a total of 4 serial devices on the reference board:

SPI Bus
 • One AD5235 dual 25kΩ, 1024-position digital potentiometer
 • One ADAQ7980 16-bit ADC

I2C Bus
 • One AD7991 12-bit ADC
 • One AD5627 12-bit DAC

Figure 3-3: ADC

8

3G. AD5235 Dual Potentiometer and Bias Divider

Figure 3-4: Dual POT for Vref and INP bias voltages

The programmable bias voltages for the sensor are derived from a voltage divider off of the precision
ADR4550 5V voltage reference used for the ADC. Potentiometer 1 controls the INP voltage from
approximately 2.5V at maximum code to approximately 5V at minimum code. Potentiometer 2 controls the
VREF_SENSOR voltage from approximately 1V at minimum code to approximately 2V at maximum code.
When potentiometer 1 is set to its lowest value of 0, the INP voltage is 5V. When INP is set to the maximum
value of 1023, the INP voltage is 2.5V. Intermediate values can be calculated according to the following
equation:

Equation 1

where D can range from 0 to 1023. Note that although the AD8606 is a ‘rail to rail’ output amplifier, it will only
get to about 4.96V, so writing values lower than ‘16’ to the rheostat may not result in the desired output. This
should not be a problem because the maximum bias voltage specified in the G920x datasheet is 4.6V. The
default value written to this rheostat should be 205d (0xCD) to get 4.5V.

Potentiometer 2 controls the Vref voltage going to the array. When the potentiometer is set to its lowest
value of 0, the output on the Vref pin is 1V. When the potentiometer is set to its highest value of 1024, the
output on the Vref pin is 2V. Intermediate values can be calculated according to the following equation:

9

Equation 2

where D can range from 0 to 1023. Vref should be set to a default value of 1.26V by writing 266d to the
potentiometer (0x10A).

3H. AD7991 ADC

Note: I2C address: 010 1001

The AD7991 is a 12-bit ADC with a 2.5V reference provided by the ADN8835, so each LSB represents
610µV. Channel 0 is used to measure the amplified and linearized thermistor output from the ADN8835.

The thermistor uses a simple linearization circuit that results in an output of approximately 26.53mV/°C from
-10°C to 40°C, with an offset of 0.566V.

To convert from volts to approximate temperature, use the following equation:

Equation 3

This approximation will result in errors of slightly over 1°C at -10°C and 40°C, and nearly zero error at 15°C.
Note that it is possible to write voltages lower than 0.239V, which will result in a lower setpoint temperature.
However, the above approximation will result in large errors. For example, the equation above predicts that
0V corresponds to -21.3°C, while the true temperature would be close to -29°C.

Figure 3-5: Thermistor linear approximation error

10

Equation 4

where:
Temperature = The thermistor temperature in degrees Kelvin
Tr = 298.15K (Temperature at which nominal thermistor resistance is specified)
Rr = 5kΩ (Nominal thermistor resistance at Tr)
B = 3200K (Thermistor constant given in the datasheet)
Rx = 5.11kΩ (R43 in the schematic)
Rtop = 10kΩ (R32 in the schematic)
Rfb = 12kΩ (R31 in the schematic)

Note: Using this equation results in linearity error dominated by the number format precision used, and
should be negligible if implemented in floating point on a PC.

Channel 1 is used to measure the linearized thermistor output from the ‘hot’ side of the heatsink. The
same equation as above can be used to convert volts to temperature, assuming the same thermistor is
used. Note that once again, the approximate equation will lose accuracy above 40°C, and the full equation
should be used if higher temperatures are expected. If a different thermistor is used, then the equation will
vary depending on the thermistor’s characteristics. For proper operation, the REF_SEL bit in the AD7991’s
Configuration Register must be set to ‘1’ (this uses the Vin3/Vref pin as the converter reference).

If higher accuracy conversion is required, use the following equation:

11

3I. DAC

Note: I2C address: 000 1110

The AD5627 DAC controls the temperature setpoint for the TEC controller. To calculate the temperature
setpoint based on the output data written, use the following equation:

Equation 5

Figure 3-6: Temperature monitoring ADC

12

3J. TEC Controller

The ADN8835, a TEC controller with integrated 3A power FETs, is used to very accurately control the
temperature of the image sensor array. The AD5627 sets the temperature setpoint and the AD7991 reads
the hot side and cold side thermistor temperatures. The TEC Voltage Limit and Current Limit are set by
resistor dividers tailored to the values needed for the G920x family. To change these limits to accommodate
a different family of image sensors with different TEC requirements, see Analog Devices UG-951 for
suggestions on the resistor value. For more information on thermoelectric cooler control, refer to ADN8835
datasheet. It may also be necessary to adjust the analog PID components and thermistor components in
order to accommodate other sensors. The EN/SY pin is pulled up in order to be enabled by default, but
the TEC controller can be shut down if this signal is pulled low by the FPGA. This pin can also be used for
synchronization, as described below.

Figure 3-7: Temperature setting DAC

Figure 3-8: TEC control

13

Indicators and Test Points

Ultralow power LEDs are provided to indicate temp good from the ADN8835 (DS4) and power good for all
power rails: DS3 indicates POS5V_TEC, DS2 indicates POS7VA, and DS1 indicates POS5VD/POS5VA
power good. Surface mount test points are provided for many signals to be probed, especially in the dense
TEC control portion of the circuit, along with corresponding ground test points.

Synchronization Feature and LTM8053 Modes

To remove any switching clock intermodulation from the circuit, this design can be fully synchronized.
ADN8835 can be synchronized by driving the shutdown signal, BAR_TEC_SD, with a clock between
1.85MHz and 3.25MHz. LTM8053 can also be synchronized by installing a provisional zero ohm resistor
in position R35 to connect its SYNC pin to the BAR_TEC_SD signal. This reduces the maximum
synchronization clock frequency to 3MHz. The clocks of both of these devices may be synchronized to a
clock output from the FPGA that is synchronous with the sensor pixel clock signals, and the ADAQ7980
samples may be taken at integer multiples of the sync clock frequency, eliminating the effect of switching
noise on the measurement. For more information, see the notes on the schematic and the ADN8835 and
LTM8053 datasheets. The full complement of SYNC/MODE options for LTM8053 are described in the
schematic. By default, the ADN8835 and the LTM8053 are both running on their internal clocks and the
LTM8053 is in pulse-skip mode.

Figure 3-9: SYNC / mode selection

14

4 Section FPGA/USB Processor Data Path

Figure 4-1: FPGA to EZ-USB FX3 interface

The pixel data is transferred between the FPGA and the USB processor using a 16-bit Synchronous Slave
FIFO interface operating at 80MHz.

The data stream consists of 16-bit pixel word comprising 256 or 512 pixels per line.

The line-to-line separator consists of 2x 16-bit marker words:
Marker Word 1: 0xAAAA
Marker Word 2: 0x5555

The marker words appear in sequence: Marker Word 1, followed by Marker Word 2. The marker words are
intended to serve the function equivalent to V-sync in video frames. Note: There is no equivalent H-syncs
as the frame is a single line.

15

4A. Interface Configuration

16

17

4B. EZ-USB Development Board Configuration

18

Figure 4-2: Cypress EZ-USB development board configuration

19

4C. FPGA/USB Processor Interface

The USB processor configures the FPGA control registers via I2C interface as described in Section 5. Once
the desired configuration parameters have been set, the USB processor sets Reg_01 bits (7:6) = “11”,
enabling the sensor control and the Slave FIFO operation.

The USB processor can disable the sensor control and/or Slave FIFO operation at any time in order to re-
configure the control registers.

20

5 Section FPGA/USB Processor Control/Status Path

5A. Access Protocol

1. The FPGA acts as I2C slave with address 0xAA.

2. EZ-USB FX3 processor acts as an I2C master.

3. Each I2C write transfer consists of the following:

 3-1. START (generated by master)

 3-2. Byte 1 = 0xAA

 3-3. ACK (generated by the slave)

 3-4. Byte 2 = Selected control register address

 3-5. ACK (generated by the slave)

 3-6. Byte 3 = Data byte to be written to the selected FPGA control register address

 3-7. ACK (generated by the slave)

 3-8. STOP

21

4. Each single byte I2C read transfer consists of the following:

 4-1. START

 4-2. Byte 1 = 0xAA

 4-3. ACK (generated by the slave)

 4-4. Byte 2 = Selected control register address

 4-5. ACK (generated by the slave)

 4-6. RESTART

 4-7. Byte 3 = 0xAB

 4-8. ACK (generated by the slave)

 4-9. Byte 4 = Data byte from the selected control register returned by the FPGA

 4-10. NACK (generated by the master)

 4-11. STOP

22

5. Each multi-byte I2C read transfer consists of the following:

 5-1. START

 5-2. Byte 1 = 0xAA

 5-3. ACK (generated by the slave)

 5-4. Byte 2 = Selected control register address

 5-5. ACK (generated by the slave)

 5-6. RESTART

 5-7. Byte 3 = 0xAB

 5-8. ACK (generated by the slave)

 5-9. Byte 4-1 = Data byte from the selected control register returned by the FPGA

 5-10. ACK (generated by the master)

 5-11. Byte 4-2 = Data byte from the selected control register returned by the FPGA

 5-12. ACK (generated by the master)

 5-13. Byte 4-3 = Data byte from the selected control register returned by the FPGA

 5-14. ACK (generated by the master)

 5-15. Byte 4-4 = Data byte from the selected control register returned by the FPGA

 5-16. NACK (generated by the master)

 5-17. STOP

Note: The number of bytes read is not limited to 4 (the 4 bytes read transfer is shown as an example only).
As additional bytes are being read, the address pointer is auto-incrementing, starting from the address
specified by Byte 2.

23

5B. Memory Space/Register Definitions

24

25

26

27

Clock Divider

Odd/Even Clock rate is derived from 60MHz clock as follows:
Odd/Even Clock Rate = 60MHz ÷ (2×Clock_Divider)

The table above provides some examples of the clock divider settings. All values of Clock_Divider[8:0]
in the range from 1 to 511 are valid, resulting in the achievable pixel clock in the range from 7.339KHz
to 3.750MHz, and the corresponding Odd/Even Clock Rate in the range from 58.708KHz to 30.000MHz.
Note: Selecting a clock divider value outside of the valid range will result in the value being ignored. The
maximum operation frequency of the sensor is specified as 4MHz.

28

Integration Time

Integration time is derived based on Odd/Even Clock Rate and the Integration_Time value as follows:
Actual Integration Time = Integration_Time ÷ Odd/Even Clock Rate

Setting Integration_Time[31:0] to 0x00000008 with Clock_Divider[8:0] = 511
10

 results in integration time
being: 8 / 58.708KHz = 136.266µsec

Max Integration Time

Setting Integration_Time[31:0] to 0xFFFFFFFF and Clock_Divider[8:0] = 1 results in integration time being:
(232-1) / 30.000MHz = 143.166sec

Min Integration Time

Setting Integration_Time[31:0] to 0x00000001 and Clock_Divider[8:0] = 511
10

 results in integration time
being: 1 / 58.708KHz = 136.267µsec

29

6 Section FPGA Design Description

The FPGA design is based on Intel (Altera) Cyclone III device EP3C25F324C8. The FPGA design is written
in VHDL. The design consists of the major blocks listed in Table 6-1.

30

Figure 6-1: FPGA design structure

The structure of the FPGA design is shown in Figure 6-1.

31

6A. clock_reset_gen.vhd

Module Inputs and Outputs

32

Module IP

Altera ALTPLL Megafunction: PLL, shown in Figure 6-2, generates 60MHz, 120MHz, and 60MHz clocks
based on 50MHz clock input.

Figure 6-2: Altera ALTPLL megafunction IP providing PLL functionality

Module Description

This module receives 50MHz clock from the Altera Cyclone-III Starter Board (DK-START-3C25N). The
received clock is provided to the PLL based on ALTPLL Megafunction IP provided by Altera. The resultant
clocks clk, clk_2x and clk_del are generated.

The module receives an asynchronous reset signal “reset_n” and creates asynchronously asserted,
synchronously to “clk” de-asserted, active-low reset output “rst_n”.

The module generates various clock enable outputs (programmable ones based on Clock_Divider: clk_
en_1x and clk_en_2x; fixed ones: at 1msec, at 10msec, at 100msec intervals).

33

6B. control.vhd

Module Inputs and Outputs

Module Description

The module combines an I2C slave module (I2C_xf) with cbus_con module allowing to perform a write or a
read access to a bank of registers connected external to control module. Refer to Figures 6-3 and 6-4.

During I2C write transfers the I2C_xf receives one byte at a time. A typical transfer consists of 2 payload
bytes: register address byte, followed by register data byte.

Each received data payload byte is presented at recv_data(7:0) output of the I2C_xf module, while being
accompanied by ser_load_en active-high single clock cycle pulse. This indicates to the CBUS controller
(cbus_con) that the data is to be stored.

first_byte output from I2C_xf indicates whether the data byte presented to cbus_con represents register
address or register data. If first_byte is asserted (active-high single clock cycle pulse) concurrently with
data_vld output of I2C_xf, then the data byte is register address, else the data byte is register data to be
stored at the respective address location.

During I2C read transfers the I2C_xf module transfers the data presented at xmit_dat(7:0) input onto the
I2C bus.

34

The first data byte serves as register address, while the second data byte serves as register write data. A
typical register read transfer is shown in Figure 6-4.

Figure 6-3: Typical I2C write transfer. STA = Start, SA = Slave ACK, STP = Stop, W = Write, X = any value (1 or 0)

Figure 6-4: Typical I2C read transfer. MN = Master NACK, R = Read

A typical register write transfer is shown in Figure 6-3.

35

A read transaction consists of two separate transfers:
1) The first is a write transfer with first data byte having all zeros, and the second data byte used to indicate

the register address to be accessed for a subsequent read transfer.
2) The second is a read transfer with data byte returned by the slave_xf containing the data corresponding

to the register address presented during the first step.

Figure 6-5: Control module architecture

36

6C. I2C_xf.vhd

Module Inputs and Outputs

37

Figure 6-6: I2C module I/Os

38

Module Description

This module implements the physical access to the I2C bus. The module acts as an I2C slave with slave
address passed via I2C_A port. The module responds to 8-bit slave address of 0xAA/0xAB. The I2C
interface supports I2C clock rates of up to 400KHz.

The I2C module design is based on a finite state machine (FSM). The FSM is shown in Figure 6-7.

The FSM dwells in IDLE state until start is detected on the I2C bus. The FSM proceeds through A7_ST to
A0_ST states receiving one address bit at a time with each falling edge of SCL. Upon arriving to ADDR
state the received address is compared to the device address (0xAA/0xAB). If the upped 7 bits match, the
slave asserts acknowledge and proceeds to receive a data byte (states D7_ST through D0_ST). Each bit of
the data byte is received on the falling edge of the SCL line.

SCL_fedge represents a falling edge of I2C SCL clock received by the FPGA. All other conditional signals
are self-explanatory.

Figure 6-7: I2C state machine

39

6D. cbus_con.vhd

Module Inputs and Outputs

40

Figure 6-8: CBUS_CON module I/Os

41

Module Description

cbus_con module receives raw bytes from the I2C_xf module and interprets them into register read and
write accesses. Once interpreted, the module produces address (CBUS_A), write data (CBUS_Do) and
write strobe (CBUS_WRS) signals to the downstream register bank for a write transaction; or (CBUS_A) and
read strobe (CBUS_Read) for a read transaction. The read data is CBUS_Di.

The module also transfers the read data back to I2C_xf module for a transfer back to I2C master via the
serial bus.

Figure 6-9: CBUS_CON state machine

6E. regs.vhd

Module Inputs and Outputs

42

43

Figure 6-10: regs module I/Os

44

Module Description

regs module provides access to the contents of the registers at addresses 0x00 through 0x2F.

When a read transfer in the range from 0x0C to 0x19 is requested, the contents of iREG_0C through
iREG_19 is used.

Read access to the address range 0x0C to 0x11 is mapped to AD7991 ADC channel 0 through 2.

REG_00 to REG_2F provide control over the various functions of the FPGA.

6F. detector_con.vhd

Module Inputs and Outputs

45

46

47

Figure 6-11: detector_con module I/Os

48

Module Description

The detector controller module provides the logic and timing for the control signals needed to properly
control a detector device under test.

The controller supports the following operating modes:

 • 256 or 512 pixels

 • Regular or High-speed operation

 • Normal (Sequential) or Parallel operating mode

Figure 6-12 through Figure 6-28 demonstrate the relationship between the detector control signals in all
possible operating modes.

Figure 6-12: 256-pixel, regular speed, sequential mode timing

Figure 6-13: 256-pixel, regular speed, sequential mode operation

49

Figure 6-14: 256-pixel, regular speed, sequential mode operation around reset

Figure 6-15: 512-pixel, regular speed, sequential mode operation around reset

Figure 6-16: 512-pixel, regular speed, sequential mode operation overview

50

Figure 6-17: 256-pixel, high speed, sequential mode operation around reset

Figure 6-18: 256-pixel, high speed, sequential mode operation overview

Figure 6-19: 512-pixel, high speed, sequential mode operation around reset

51

Figure 6-20: 512-pixel, high speed, sequential mode operation overview

Figure 6-21: 256-pixel, regular speed, parallel mode operation around reset

Figure 6-22: 256-pixel, regular speed, parallel mode operation overview

52

Figure 6-23: 512-pixel, regular speed, parallel mode operation around reset

Figure 6-24: 512-pixel, regular speed, parallel mode operation overview

Figure 6-25: 256-pixel, high speed, parallel mode operation around reset

53

Figure 6-26: 256-pixel, high speed, parallel mode operation overview

Figure 6-27: 512-pixel, high speed, parallel mode operation around reset

Figure 6-28: 512-pixel, high speed, parallel mode operation overview

54

The detector controller module design is based on an FSM (Finite State Machine) shown in Figure 6-29.

Figure 6-29: Detector controller state machine

6G. adc_con.vhd

Module Inputs and Outputs

55

56

Figure 6-30: adc_con module I/Os

Module Description

adc_con module serves as an interface between the FPGA and the two Analog Devices ICs sharing the
same SPI bus: ADAQ7980 (ADC) and AD5235 (Dual Digital Potentiometer). adc_con module includes
adc_xf module, which implements the interface logic, while adc_con serves the functions of a wrapper
and contains some glue logic. As the SPI interface is shared, the design of the adc_xf includes an arbiter,
allowing access to both physical devices using the shared interface.

6H. adc_xf.vhd

Module Inputs and Outputs

57

58

Module Description

adc_xf module serves as an interface between the FPGA and the two Analog Devices ICs sharing the
same SPI bus: ADAQ7980 (ADC) and AD5235 (Dual Digital Potentiometer). adc_xf module implements the
interface logic based on state machines. As the SPI interface is shared, the design of the adc_xf includes
an arbiter, allowing access to both physical devices using the shared interface. The arbitration is based on
the fact control coming from the detector_con module.

During the time when odd/even clocks and strobes are actively generated and odd/even trigger inputs are
output by the sensor (adtrig_odd/ad_trig_even) the adc_xf communicates with ADAQ7980 to acquire the
corresponding pixel data. During the reset intervals, when the sensor is performing integration, adc_xf
allows the Read and Write accesses to the digital potentiometer AD5235. The accesses to the digital
potentiometer are suspended while the accesses to ADC continue following the integration interval.

The ADC state machine is shown in Figure 6-31. The FSM idles in ADC_IDLE_ST state waiting for the
next rising edge of adc trigger from the sensor. adc_tcnv_cnt is initialized to 60; hence the state machine
waits in ADC_CNV_ST until the conversion is finished. The wait time is 60 x 60MHz periods, or 1000nsec.
ADAQ7980 device conversion time ranges from 500 to 710nsec. With 1000nsec conversion time allowance,
the design provides for an ample margin.

Figure 6-31: ADC state machine

59

The interface to ADC consists of the SPI (with MOSI and Chip-Select not connected) and CNV signal (adc_
cnv). During ADC_RD_SNV_RESULT state the 16-bit ADC data is serially captured, while the adc_xf pulses
SPI clock SCLK.

The digital potentiometer state machine is shown in Figure 6-32.

Figure 6-32: Digital potentiometer state machine

The digital potentiometer read and write requests are received via I2C and result in the corresponding
trigger requests being generated. In response to the trigger requests, while the detector controller is in the
reset (integration) phase, the accesses to the digital potentiometer are performed.

6I. AD7991_con.vhd

Module Inputs and Outputs

60

61

Figure 6-33: AD7991_con module I/Os

62

Module Description

AD7991_con module is responsible for high-level control of the AD7991 I2C ADC. The system contains 2
I2C devices: AD7991 12-bit ADC and AD5627 12-bit DAC. Both devices share the same I2C bus. To allow
for the FPGA to access both devices the design includes a Multi-Port Access Controller (MPAC), connected
to I2C Master at one side and to the two I2C controllers (AD7991_con and AD5627_con) on the other side.

AD7991_con controls the high-level I2C commands and data issued to and received from the DAC. The
control is based on a state machine shown in Figure 6-34.

Figure 6-34: AD7991_con state machine

6J. AD5627_con.vhd

Module Inputs and Outputs

63

During the initialization phases of the state machine (INIT_SETUP_ST through INIT_DONE_ST), the
AD7991 is initialized by performing the following transactions:
Write 00111000 to enable reading Ch0 and Ch1, Select External REF, Enable I2C filtering, Enable bit try
and Sample Delay.

Upon completion of the initialization the controller is ready to access the ADC. The ADC read requests are
performed via slave I2C interface, when the external USB controller accesses the respective FPGA slave
registers. In response, the controller state machine traverses states ADC_RD_SETUP_ST through ADC_
RD_DONE_ST and reads the three available analog channels.

64

Figure 6-35: AD5627_con module I/Os

65

Module Description

AD5627_con module is responsible for the initialization and high-level control, including data reads and
writes of the AD5627 I2C DAC. All accesses to the physical DAC are performed via I2C bus, using I2C
master and a Multi-Port Access Controller (MPAC). The accesses to AD5627 are shared with I2C transfers
performed in the course of accesses to AD7991, and therefore are arbitrated by the MPAC. The controller
is based on a state machine shown in Figure 6-36.

Figure 6-36: AD5627_con state machine

66

AD5627 initialization consists of 4 steps:

1. LDAC Setup:
a. Data Byte 1 = “00110000” (Command = “110”)
b. Data Byte 2 = “00000000” (Don’t Care)
c. Data Byte 3 = “00000001” (DAC B LDAC pin enabled, DAC A LDAC pin disabled)

2. Reference Setup:
a. Data Byte 1 = “00111000” (Command = “111”)
b. Data Byte 2 = “00000000” (Don’t Care)
c. Data Byte 3 = “00000001” (Internal Reference ON)

3. Load Input Shift Register:
a. Data Byte 1 = “01011000” (Byte Selection (S) = 1, Command = “011” (Write to and Update DAC Channel
n), DAC Address = “000” (DAC A))
b. Data Byte 2 = DAC(11:4)
c. Data Byte 3 = DAC(3:0) & “0000”

4. Power-up:
a. Data Byte 1 = “00100000” (Command = Power-up)
b. Data Byte 2 = “00000000” (Don’t Care)
c. Data Byte 3 = “00000001” (Normal Operation (5:4) = “00”, Select DAC A (bit 0 = ‘1’))

For all subsequent accesses DAC write is performed whenever a trigger is received. Upon a trigger, which is
an I2C slave write to the FPGA from the USB sub-system, the state machine sends the 12-bit DAC input to
AD5627 device.

6K. mpac.vhd

Module Inputs and Outputs

67

68

Figure 6-37: MPAC module I/Os

69

Module Description

The Multi-Port Access Controller links the high-level controllers needing to perform high-level I2C transfers
with a single I2C Master controller available on the FPGA. AD7991_con and AD5627_con controllers utilize
2 of the 8 available ports on the MPAC. The MPAC performs round-robin access arbitration between all
8 ports. In reality, since only 2 ports are utilized the available bandwidth is split ~50/50 between the two
controllers.

The MPAC design is based on 2 state machines: one state machine is used for round-robin access
arbitration, while the second state machine is used for control of the interface with the I2C master module
I2C_master.

The arbitration state machine is shown in Figure 6-38. A request is checked one at a time. If a request is
asserted, the corresponding port is allowed access to the I2C Master interface via the I2C Master Interface
state machine shown in Figure 6-39.

Figure 6-38: MPAC arbitration state machine

Figure 6-39: MPAC I2C master interface state machine

6L. I2C_master.vhd

Module Inputs and Outputs

70

Figure 6-40: I2C master module I/Os

71

Module Description

This module interfaces to MPAC module and provides for master access to the I2C bus. The two slave
devices accessed by the master are AD7991 and AD5627. The module design is based on a state machine
shown in Figure 6-41.

Figure 6-41: I2C master state machine

6M. tx_fifo.vhd

Module Inputs and Outputs

72

Figure 6-42: tx_fifo module I/Os

6N. slavefifo2b_streamin.vhd

Module Inputs and Outputs

73

Module Description

This module serves the purpose of storing the data received from the image sensor prior to having that data
transferred to the USB microprocessor via slavefifo2b_streamin module. The FIFO size is 256 words deep,
with each word being 16-bits wide.

74

Figure 6-43: slavefifo2b_streamin module I/Os

75

Module Description

This module implements Synchronous Slave FIFO Interface in accordance with Cypress CYUSB301X
datasheet. The synchronous slave FIFO interface is used for transferring pixel data to the USB
microprocessor and onto the PC. The slave FIFO interface is based on Cypress Application Note AN65974.
The interface design from the application note has been revised and further elaborated and modified for this
present application. The implementation is centered on the state machine shown in Figure 6-44.

Figure 6-44: Slave FIFO interface state machine

76

7 Section USB Sub-System

The USB interface sub-system is based upon Cypress EZ-USB FX3 development kit. At the heart of the
Cypress platform is USB microprocessor CYUSB301X supporting USB3.0 interface.

The USB microprocessor design is based on Cypress Synchronous Slave FIFO. SlaveFIFOSync project is
provided as a part of this system. The project is comprised of the following files:

1. cyfx_gcc_startup.S:
Start-up code for the ARM-9 core on the FX3 device. This assembly source file follows the syntax for the
GNU assembler.

2. cyfxslfifosync.h:
C header file that defines constants used by this example implementation. Can be modified to select USB
connection speed, endpoint numbers and properties, etc.

3. cyfxslfifousbdscr.c:
C source file that contains USB descriptors used by this example. VID and PID are defined in this file.

4. cyfxgpif_syncsf.h:
C header file that contains the data required to configure the GPIF interface to implement the Sync Slave
FIFO protocol.

5. cyfxtx.c:
C source file that provides ThreadX RTOS wrapper functions and other utilities required by the FX3 firmware
library.

6. cyfxslfifosync.c:
Main C source file.

7. makefile:
GNU make compliant build script for compiling this project.

This project configures and uses the GPIF II interface on the FX3 device in synchronous slave FIFO mode.
The FPGA acts as a master device that implements the Cypress-defined Sync Slave FIFO.

This project implements the following functions:
1. Configuration of the GPIF II interface to implement the Sync Slave FIFO protocol.
2. Enumeration as a vendor specific USB device with two bulk endpoints (1-OUT and 1-IN).
3. Creation of MANUAL DMA channels to enable the following data paths:

a. All data received from the USB host through the 1-OUT endpoint is forwarded to the master device on
the slave port through socket 3.

 b. All data received from the master device on the slave port through socket 0 is forwarded to the USB
host through the 1-IN endpoint.

4. When any data packet is received through one of the ingress sockets, the application is notified and
forwards the data to the recipient through a DMA callback function.

77

The output of the compilation is SlaveFifoSync.img, which is loaded into the Cypress EZ-USB board using
USB Control Center Application, part of EZ-USB FX3 SDK Software tools.

To load the file into the target perform the following steps (1-5):
1) Connect EZ-USB FX3 board to the PC.
2) Once the drivers for the USB device are installed, the screen shown in Figure 7-1 will be seen.

Figure 7-1: USB control center initial screen

78

Figure 7-2: Program FX3 device

3) Select the device (Cypress FX3 USB BootLoader Device), then click on Program -> FX3 -> RAM (refer to
Figure 7-2).

79

4) Navigate to the location of “SlaveFifoSync.img” and select “Open.”
5) The new driver will be loaded by the operating system, resulting in the following screen shown in

Figure 7-3.

Figure 7-3: FX3 device has been programmed

Now, the USB development board is ready to perform data transfers.

Notes:
1) The firmware has been loaded into RAM; hence should the power to the board be turned off (or USB

cable unplugged from the PC), the programming steps would have to be repeated.
2) It is important to use a high quality USB 3.0 cable and a corresponding USB 3.0 port on the PC.

80

8 Section PC Software and IGAA Driver Library

The PC software uses the IGAA Driver Library for control, monitoring and data acquisition based on the
development system described herein. Please refer to “Hamamatsu Driver Circuit for Image Sensor Control
Library” document for the detailed information on the available functions.

9A. Timing Operations and Analog I/O Signals

This is the timing diagram of the G9201~8 and G9211~4 sensors. The integration time is set by the Reset
input pulse width. Each pixel is being read out every 8 clocks.

Figure 9-1: The G920x sensor timing diagram

81

9 Section Test Results

82

In the software interface, the pixel format, readout mode, integration time, temperature, bias voltages, and
the number of line data to be written can be defined.

Figure 9-2: Parameter setting in the software interface

83

Pixel Number Select: 256 or 512.

For a 512-pixel array, there are two video output ports on the sensor chip: even and odd. Three readout
modes are designed to read out from the sensor depending on the different multiplexer timing:
Multiplexer Timing (1) – Even/Odd simultaneous (parallel)
Multiplexer Timing (1a) – Non-Return to Zero (stagger)
Multiplexer Timing (2) – Clock burst with return to zero between pixel reads (bursts) – the same as C8062,
the standard InGaAs multichannel detector head offered by Hamamatsu

The three different timing modes are tested, and the timing diagrams and test results are shown in
Figures 9-3 to 9-18.

Figure 9-3: Timing diagram of MUX Timing (1) - Parallel clocking

84

Figure 9-4: Test results of CLK and AD_Trig signals at MUX Timing (1)

Figure 9-5: Test results of video output signal at MUX Timing (1)

85

Figure 9-6: Test results of Even/Odd SEL and video output signals at MUX Timing (1)

Figure 9-7: Test results of AD_CONV and video output signals at MUX Timing (1)

86

Figure 9-8: Timing diagram of MUX Timing (1a)

Figure 9-9: Test results of CLK and AD_Trig signals at MUX Timing (1a)

87

Figure 9-10: Test results of AD_CONV and video signals at MUX Timing (1a)

Figure 9-11: Test results of CLK and MUX output signals at MUX Timing (1a)

88

Figure 9-12: Test results of CLK, AD_Trig and video output signals at MUX Timing (1a)

Figure 9-13: Timing diagram of MUX Timing (2)

89

Figure 9-14: Test results of CLK and AD_Trig signals at MUX Timing (2)

Figure 9-15: Test results of Even/Odd SEL and video output signals at MUX Timing (2)

90

Figure 9-16: Zoom-out view of Figure 9-15

Figure 9-17: Test results of AD_CONV and video output signals at MUX Timing (2)

9B. Dark Stability

To verify the dark output is stable over time, indicating the InGaAs sensor cold-side temperature is stable
at 0 deg. C., 600 scans are collected at 1 second integration time in the dark and the standard deviation is
calculated for each pixel. Note: The level grouping is caused by Even/Odd CMOS ROIC variation. This is
normal Even/Odd output pattern.

91

Figure 9-18: Zoom-in view of Figure 9-17

Figure 9-19: Dark measurement at 1 sec integration time

92

Figure 9-20: Standard deviation of 600 dark scans

9C. Noise

The readout noise was measured at 1 millisecond (msec) integration time.

Figure 9-21: Readout measurement

93

Figure 9-22: Linearity measurement with varying integration time

Since the unity gain and the 5V reference voltage of ADC are used, one LSB represents 76.3µV. The
readout noise is in the range of 300µV~600µV.

9D. Linearity

Figure 9-23: Linearity measurement with dark subtraction

	Cover, Auth, TOC_G
	Sec 1_F
	Sec 2_F
	Sec 3_F
	Sec 4_F
	Sec 5_F
	Sec 6_F
	Sec 7_F
	Sec 8_F
	Sec 9_F

